Soft robotics aims at creating systems with improved performance of movement and adaptability in unknown, challenging, environments and with higher level of safety during interactions with humans. This Roadmap on Soft Robotics covers selected aspects for the design of soft robots significantly linked to the area of multifunctional materials, as these are considered a fundamental component in the design of soft robots for an improvement of their peculiar abilities, such as morphing, adaptivity and growth. The roadmap includes different approaches for components and systems design, bioinspired materials, methodologies for building soft robots, strategies for the implementation and control of their functionalities and behaviour, and examples of soft-bodied systems showing abilities across different environments. For each covered topic, the author(s) describe the current status and research directions, current and future challenges, and perspective advances in science and technology to meet the challenges.
The emerging generation of robots composed of soft materials strives to match biological motor adaptation skills via shape-shifting. Soft robots often harness volumetric expansion directed by strain limiters to deform in complex ways. Traditionally, strain limiters have been inert materials embedded within a system to prescribe a single deformation. Under changing task demands, a fixed deformation mode limits adaptability. Recent technologies for on-demand reprogrammable deformation of soft bodies, including thermally activated variable stiffness materials and jamming systems, presently suffer from long actuation times or introduce unwanted bending stiffness. We present fibers that switch tensile stiffness via jamming of segmented elastic fibrils. When jammed, tensile stiffness increases more than 20× in less than 0.1 s, but bending stiffness increases only 2×. When adhered to an inflating body, jamming fibers locally limit surface tensile strains, unlocking myriad programmable deformations. The proposed jamming technology is scalable, enabling adaptive behaviors in emerging robotic materials that interact with unstructured environments.
Design synthesis of distributed compliant mechanisms is often a two-stage process involving (a) conceptual topology synthesis and a subsequent (b) refinement stage to meet strength and manufacturing specifications. The usefulness of a solution is ascertained only after the sequential completion of these two steps that are, in general, computationally intensive. This paper presents a strategy to rapidly estimate final operating stresses even before the actual refinement process. This strategy is based on the uniform stress distribution metric, and a functional characterization of the different members that constitute the compliant mechanism topology. Furthermore, this paper uses the underlying mechanics of stress bound estimation to propose two rule of thumb guidelines for insightful selection of topologies and systematically modifying them for an application. The selection of the best conceptual solution in the early stage design avoids refinement of topologies that inherently may not meet the stress constraints. This paper presents two examples that illustrate these guidelines through the selection and refinement of topologies for a planar compliant gripper application.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.