Anchorage-independent growth is the ability of transformed cells to grow independently of a solid surface, and is a hallmark of carcinogenesis. The soft agar colony formation assay is a well-established method for characterizing this capability in vitro and is considered to be one of the most stringent tests for malignant transformation in cells. This assay also allows for semi-quantitative evaluation of this capability in response to various treatment conditions. Here, we will demonstrate the soft agar colony formation assay using a murine lung carcinoma cell line, CMT167, to demonstrate the tumor suppressive effects of two members of the Wnt signaling pathway, Wnt7A and Frizzled-9 (Fzd-9). Concurrent overexpression of Wnt7a and Fzd-9 caused an inhibition of colony formation in CMT167 cells. This shows that expression of Wnt7a ligand and its Frizzled-9 receptor is sufficient to suppress tumor growth in a murine lung carcinoma model.
Acute Respiratory Distress Syndrome (ARDS) is a clinical syndrome characterized by diffuse alveolar damage usually secondary to an intense host inflammatory response of the lung to a pulmonary or extrapulmonary infectious or non-infectious insult often leading to the development of intra-alveolar and interstitial fibrosis. Curcumin, the principal curcumoid of the popular Indian spice turmeric, has been demonstrated as an anti-oxidant and anti-inflammatory agent in a broad spectrum of diseases. Using our well-established model of reovirus 1/L-induced acute viral pneumonia, which displays many of the characteristics of the human ALI/ARDS, we evaluated the anti-inflammatory and anti-fibrotic effects of curcumin. Female CBA/J mice were treated with curcumin (50 mg/kg) 5 days prior to intranasal inoculation with 107 pfu reovirus 1/L and daily, thereafter. Mice were evaluated for key features associated with ALI/ARDS. Administration of curcumin significantly modulated inflammation and fibrosis, as revealed by histological and biochemical analysis. The expression of IL-6, IL-10, IFNγ, and MCP-1, key chemokines/cytokines implicated in the development of ALI/ARDS, from both the inflammatory infiltrate and whole lung tissue were modulated by curcumin potentially through a reduction in the phosphorylated form of NFκB p65. While the expression of TGFß1 was not modulated by curcumin, TGFß Receptor II, which is required for TGFß signaling, was significantly reduced. In addition, curcumin also significantly inhibited the expression of α-smooth muscle actin and Tenascin-C, key markers of myofibroblast activation. This data strongly supports a role for curcumin in modulating the pathogenesis of viral-induced ALI/ARDS in a pre-clinical model potentially manifested through the alteration of inflammation and myofibroblast differentiation.
Background: PRMT1 is up-regulated in lung cancer.Results: PRMT1 is a novel regulator of EMT and Twist1 is a new PRMT1 substrate.Conclusion: PRMT1-methylation of Twist1 is required for active E-cadherin repression.Significance: Targeting PRMT1-mediated Twist1 methylation might represent a novel strategy for developing new anti-invasive/anti-metastatic drugs.
Cellular senescence is an initial barrier for carcinogenesis. However, the signaling mechanisms that trigger cellular senescence are incompletely understood, particularly in vivo. Here we identify Wnt7a as a novel upstream inducer of cellular senescence. In two different mouse strains (C57Bl/6J and FVB/NJ), we show that the loss of Wnt7a is a major contributing factor for increased lung tumorigenesis owing to reduced cellular senescence, and not reduced apoptosis, or autophagy. Wnt7a-null mice under de novo conditions and in both the strains display E-cadherin-to-N-cadherin switch, reduced expression of cellular senescence markers and reduced expression of senescence-associated secretory phenotype, indicating a genetic predisposition of these mice to increased carcinogen-induced lung tumorigenesis. Interestingly, Wnt7a induced an alternate senescence pathway, which was independent of β-catenin, and distinct from that of classical oncogene-induced senescence mediated by the well-known p16INK4a and p19ARF pathways. Mechanistically, Wnt7a induced cellular senescence via inactivation of S-phase kinase-associated protein 2, an important alternate regulator of cellular senescence. Additionally, we identified Iloprost, a prostacyclin analog, which initiates downstream signaling cascades similar to that of Wnt7a, as a novel inducer of cellular senescence, presenting potential future clinical translational strategies. Thus pro-senescence therapies using either Wnt7a or its mimic, Iloprost, might represent a new class of therapeutic treatments for lung cancer.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.