The aim of this paper is to presents a theoretical analysis on squeeze-film characteristics of a rough porous circular stepped plate in the vicinity of pressure-dependent viscosity and lubrication by micropolar fluids. A closed-form expression for non-dimensional pressure, load, and squeezing time is derived based on Eringen’s theory, Darcy’s equation, and Christensen’s stochastic approach. Results indicate that the effects of pressure-dependent viscosity, surface roughness, and micropolar fluids play an important role in increasing the load-carrying capacity and squeezing time, whereas the presence of porous media decreases the load-carrying capacity and squeezing time of the rough porous circular stepped plates.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.