Cumulative mtDNA damage occurs in aging animals, and mtDNA mutations are reported to accelerate aging in mice. We determined whether aging results in increased DNA oxidative damage and reduced mtDNA abundance and mitochondrial function in skeletal muscle of human subjects. Studies performed in 146 healthy men and women aged 18 -89 yr demonstrated that mtDNA and mRNA abundance and mitochondrial ATP production all declined with advancing age. Abundance of mtDNA was positively related to mitochondrial ATP production rate, which in turn, was closely associated with aerobic capacity and glucose tolerance. The content of several mitochondrial proteins was reduced in older muscles, whereas the level of the oxidative DNA lesion, 8-oxo-deoxyguanosine, was increased, supporting the oxidative damage theory of aging. These results demonstrate that age-related muscle mitochondrial dysfunction is related to reduced mtDNA and muscle functional changes that are common in the elderly.sarcopenia ͉ mtDNA ͉ oxidative damage ͉ mRNA ͉ mitochondrial proteins M any structural and functional changes occur with age in skeletal muscle in a wide range of species. In Caenorhabditis elegans, muscle changes resembling those in humans precede neuronal changes, and are a determinant of morbidity (1). Age-related muscle wasting, muscle weakness, and reduced aerobic capacity result in many metabolic disorders and diminished physical performance in humans (2-4). Reduced muscle mitochondrial function could contribute to age-related muscle dysfunction and reduced aerobic capacity. Increased prevalence of mtDNA mutations (5, 6) and decreased mtDNA abundance (7, 8) have been proposed as underlying causes of mitochondrial dysfunction in aging. This finding is based on a hypothesis that cumulative oxidative damage could be the cause of aging (9).The rate of synthesis of contractile and mitochondrial proteins in human skeletal muscle declines with advancing age and may alter muscle metabolic capacity in older people (2-4). The activity of oxidative enzymes and content mRNA transcripts encoding mitochondrial proteins are also reduced in older muscles (3,7,10,11). Reduced synthesis and activity of specific proteins can alter muscle functions. The major functional role of mitochondria is ATP generation, but it remains unclear whether mitochondrial ATP production rate (MAPR) in skeletal muscle declines with age in humans. Previous studies that attempted to address this question are not in agreement, reporting that MAPR is either unchanged with age (12-16) or declines (17-19). These differences may arise from the use in some studies of inadequate sample sizes, failure to account for wide variations in physical fitness and diet, and the inclusion of subjects with metabolic abnormalities or undergoing surgical procedures at the time of analysis. Most of the previous studies examined discrete groups of younger and older people so it is unclear whether changes in mitochondria occur continuously across the adult life span or arise more rapidly later in life. We th...
OBJECTIVE-We determined whether reduced insulin sensitivity, mitochondrial dysfunction, and other age-related dysfunctions are inevitable consequences of aging or secondary to physical inactivity.RESEARCH DESIGN AND METHODS-Insulin sensitivity was measured by hyperinsulinemic-euglycemic clamp and ATP production in mitochondria isolated from vastus lateralis biopsies of 42 healthy sedentary and endurance-trained young (18 -30 years old) and older (59 -76 years old) subjects. Expression of proteins involved in fuel metabolism was measured by mass spectrometry. Citrate synthase activity, mitochondrial DNA (mtDNA) abundance, and expression of nuclear-encoded transcription factors for mitochondrial biogenesis were measured. SIRT3, a mitochondrial sirtuin linked to lifespan-enhancing effects of caloric restriction, was measured by immunoblot.RESULTS-Insulin-induced glucose disposal and suppression of endogenous glucose production were higher in the trained young and older subjects, but no age effect was noted. Age-related decline in mitochondrial oxidative capacity was absent in endurance-trained individuals. Although endurance-trained individuals exhibited higher expression of mitochondrial proteins, mtDNA, and mitochondrial transcription factors, there were persisting effects of age. SIRT3 expression was lower with age in sedentary but equally elevated regardless of age in endurance-trained individuals.CONCLUSIONS-The results demonstrate that reduced insulin sensitivity is likely related to changes in adiposity and to physical inactivity rather than being an inevitable consequence of aging. The results also show that regular endurance exercise partly normalizes age-related mitochondrial dysfunction, although there are persisting effects of age on mtDNA abundance and expression of nuclear transcription factors and mitochondrial protein. Furthermore, exercise may promote longevity through pathways common to effects of caloric restriction. Diabetes 57: 2933-2942, 2008 R educed insulin sensitivity is a common factor in the metabolic syndrome, a cluster of clinical conditions that shows increased risk with age (1-3). Mitochondrial dysfunction is also prevalent in the elderly (4,5), with reductions in mitochondrial enzyme activities (6), protein synthesis (7) and expression (5), and DNA (mtDNA) abundance (5,8). A close association between insulin sensitivity and muscle mitochondrial function has been reported in aging (4,5), type 2 diabetes (9), and obesity (10) as well as in offspring of type 2 diabetic individuals (11), prompting a hypothesis that either reduced insulin sensitivity results from muscle mitochondrial dysfunction (4,11) or vice versa (5,12).Endurance exercise increases insulin sensitivity (13,14) and mitochondrial enzyme activities (15,16). Short-term and longitudinal studies have documented that older populations respond favorably to endurance exercise but that there are persisting age effects that cannot be eliminated by short-term exercise programs (8,17). For practical reasons, most training studies ar...
The pathophysiology of hepatic steatosis, a prerequisite of nonalcoholic fatty liver disease, is poorly understood. Because very-low-density lipoprotein (VLDL) formation is the chief route of hepatic lipid export, we hypothesized that the synthesis of apoB-100, a rate-determining step in hepatic VLDL formation, may be altered in patients with nonalcoholic steatohepatitis (NASH). This study evaluated the relative synthesis rates of apolipoprotein B-100 (apoB-100) in patients with NASH and in lean and body mass index (BMI)-matched (obese) controls without NASH. A primed continuous infusion of L-[1-13 C] leucine was used to measure the absolute synthesis rates (ASR) of apoB-100 and fibrinogen in 7 patients with NASH and compared them with 7 lean and 7 obese (BMI-matched) controls without NASH. The ASRs of fibrinogen and albumin also were measured. The mean ASR of apoB-100 in patients with NASH was lower (31.5 ؎ 3.4 mg/kg/d) than that of obese (115.2 ؎ 7.2 mg/kg/d, P < .001) and lean controls (82.4 ؎ 4.1 mg/kg/d, P ؍ .002). In contrast, the mean ASR of fibrinogen was greater in subjects with NASH than in both control groups. These data indicate that NASH is associated with markedly altered hepatic synthesis of apoB-100. The finding that albumin synthesis was not similarly decreased in patients with NASH shows that the attenuation of apoB-100 synthesis is not on the basis of globally impaired hepatic protein synthesis. In conclusion, because apoB-100 synthesis is a rate-determining step in hepatocyte lipid export, decreased synthesis of this protein may be an important factor in the development of hepatic steatosis, a prerequisite for NASH. (HEPATOLOGY 2002;35:898-904.) N on-alcoholic steatohepatitis (NASH; part of the spectrum of nonalcoholic fatty liver disease) is characterized by macrovesicular steatosis, nuclear glycogenation, lobular and portal inflammation, and, occasionally, Mallory's hyaline, in the absence of excessive alcohol ingestion. 1 NASH is most frequently associated with obesity 2-9 and type 2 diabetes mellitus. 3,[7][8][9] Despite the high prevalence and the increasingly recognized morbidity associated with NASH, little is known about the pathophysiology of this condition. The liver is central to the regulation of fat metabolism, and the net accumulation of fat within hepatocytes, a prerequisite for steatosis and steatohepatitis, could potentially result from alterations in the uptake, synthesis, degradation, or secretory pathways of hepatic lipid metabolism.Apolipoprotein B-100 (apoB-100) is a large protein (512 kd) involved in the transport of triglycerides and cholesterol from the liver to peripheral tissues. Lipids are chiefly exported from the liver in the form of very-lowdensity lipoproteins (VLDL), a complex of protein (apoB-100), lipids (triglycerides or cholesteryl esters), and phospholipids. Although the mechanisms regulating the synthesis of apoB-100 are incompletely understood, the production of apoB-100 messenger RNA (mRNA) has been shown to be altered by insulin and unaffected by...
Type 2 diabetes is characterized by muscle insulin resistance. Nondiabetic first-degree relatives of type 2 diabetic patients have also been reported to have insulin resistance. A polygenic basis for pathogenesis of type 2 diabetes has been proposed. A gene expression profile was evaluated in the skeletal muscle of patients with type 2 diabetes while not on treatment for 2 weeks and after 10 days of intensive insulin treatment. Comparison of gene expression pattern with age-, sex-, and BMI-matched people with no family history of diabetes was performed using a microarray technique (Hu6800 arrays; Affymetrix, Santa Clara, CA). Only those gene transcripts showing >1.9-fold changes and an average difference in fluorescence intensity of >1,000 in all subjects are reported. Insulin sensitivity (SI) was measured using an intravenous glucose tolerance test. Of 6,451 genes surveyed, transcriptional patterns of 85 genes showed alterations in the diabetic patients after withdrawal of treatment, when compared with patterns in the nondiabetic control subjects. Insulin treatment reduced the difference in patterns between diabetic and nondiabetic control subjects (improved) in all but 11 gene transcripts, which included genes involved in structural and contractile functions, growth and tissue development, stress response, and energy metabolism. These improved transcripts included genes involved in insulin signaling, transcription factors, and mitochondrial maintenance. However, insulin treatment altered the transcription of 29 additional genes involved in signal transduction; structural and contractile functions; growth and tissue development; and protein, fat, and energy metabolism. Type 2 diabetic patients had elevated circulating insulin during the insulin-treated phase, although their blood glucose levels (98.8 ؎ 6.4 vs. 90.0 ؎ 2.9 mg/dl for diabetic vs. control) were similar to those of the control subjects. In contrast, after withdrawal of treatment, the diabetic patients had reduced SI and elevated blood glucose (224.0 ؎ 26.2 mg/dl), although their insulin levels were similar to those of the nondiabetic control subjects. This study identified several candidate genes for muscle insulin resistance, complications associated with poor glycemic control, and effects of insulin treatment in people with type 2 diabetes. Diabetes
Gastric cancer (GC) is a highly heterogeneous disease. To identify potential clinically actionable therapeutic targets that may inform individualized treatment strategies, we performed whole-exome sequencing on 78 GCs of differing histologies and anatomic locations, as well as whole-genome sequencing on two GC cases, each with three primary tumors and two matching lymph node metastases. The data showed two distinct GC subtypes with either high-clonality (HiC) or low-clonality (LoC). The HiC subtype of intratumoral heterogeneity was associated with older age, TP53 (tumor protein P53) mutation, enriched C > G transition, and significantly shorter survival, whereas the LoC subtype was associated with younger age, ARID1A (AT rich interactive domain 1A) mutation, and significantly longer survival. Phylogenetic tree analysis of whole-genome sequencing data from multiple samples of two patients supported the clonal evolution of GC metastasis and revealed the accumulation of genetic defects that necessitate combination therapeutics. The most recurrently mutated genes, which were validated in a separate cohort of 216 cases by targeted sequencing, were members of the homologous recombination DNA repair, Wnt, and PI3K-ERBB pathways. Notably, the drugable NRG1 (neuregulin-1) and ERBB4 (V-Erb-B2 avian erythroblastic leukemia viral oncogene homolog 4) ligand-receptor pair were mutated in 10% of GC cases. Mutations of the BRCA2 (breast cancer 2, early onset) gene, found in 8% of our cohort and validated in The Cancer Genome Atlas GC cohort, were associated with significantly longer survivals. These data define distinct clinicogenetic forms of GC in the Chinese population that are characterized by specific mutation sets that can be investigated for efficacy of single and combination therapies.clonality | exome sequencing | mutation | ERBB | BRCA2 G astric cancer (GC) is the fourth most common cancer and the second leading cause of cancer death worldwide, accounting for 8% of all newly diagnosed cancers and 10% of cancer mortality(1). Environmental risk factors for GC include a high-salt diet, smoking, and infectious agents (1), including the bacterium Helicobacter pylori (2), and Epstein Barr Virus (3). Consistent with its complicated etiology (e.g., diet) and anatomical environment, GC is clinically and pathologically highly heterogeneous (4), with a large variation in 5-y survival rates in different countries, and even different cities in the same country (5, 6). This clinical heterogeneity is mirrored by concomitant heterogeneous molecular signatures in GC mRNA, protein, and miRNA expression profiles (7,8). Standard treatment strategies have largely ignored the heterogeneity and individuality of different subtypes of GC. The current approach entails surgical removal of the tumor followed by adjuvant fluoropyrimidine, taxane, and platinum-based chemotherapy doublets or triplets, especially for advanced GC, and this is exacerbated by the lack of reliable markers to predict response. Recently, the US Food and Drug Administratio...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.