Summary
Single-molecule fluorescence
in situ
hybridization (smFISH) allows spatial mapping of gene expression. This protocol presents advances in smFISH fidelity and flexibility in intact murine sensory nervous system tissue. An approach using RNAscope probes allows multiplexing, enhanced target specificity, and immunohistochemistry compatibility. Computational strategies increase quantification accuracy of mRNA puncta with a point spread function for clustered transcripts in the dorsal root ganglion and 3D masking for intermingled sciatic nerve cell types. Approaches are validated for mRNAs of modest (Lin28a) and medium (Ppib) steady-state abundance in neurons.
MicroRNAs (miRNAs) are small non-coding RNAs (sncRNAs) that function in post-transcriptional gene regulation through imperfect base pairing with mRNA targets which results in inhibition of translation and typically destabilization of bound transcripts. Sequence-based algorithms historically used to predict miRNA targets face inherent challenges in reliably reflecting in vivo interactions. Recent strategies have directly profiled miRNA-target interactions by crosslinking and ligation of sncRNAs to their targets within the RNA-induced silencing complex (RISC), followed by high throughput sequencing of the chimeric sncRNA:target RNAs. Despite the strength of these direct profiling approaches, standardized pipelines for effectively analyzing the resulting chimeric sncRNA:target RNA sequencing data are not readily available. Here we present SCRAP, a robust Small Chimeric RNA Analysis Pipeline for the bioinformatic processing of chimeric sncRNA:target RNA sequencing data. SCRAP consists of two parts, each of which are specifically optimized for the distinctive characteristics of chimeric small RNA sequencing reads: first, read processing and alignment and second, peak calling and annotation. We apply SCRAP to benchmark chimeric sncRNA:target RNA sequencing datasets generated by distinct molecular approaches, and compare SCRAP to existing chimeric RNA analysis pipelines. SCRAP has minimal hardware requirements, is cross-platform, and contains extensive annotation to broaden accessibility for processing small chimeric RNA sequencing data and enable insights about the targets of small non-coding RNAs in regulating diverse biological systems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.