This study investigates a fuzzy controller technique for autonomous robot navigation in both the static and dynamic environmental conditions and an excessive number of pathways to the destination. The design and implementation of a novel obstacle avoidance technique for autonomous robots are developed using the fuzzy controller-based multi-agent system. This method allows the Robot to identify dynamic or static unidentified objects while directing the Robot to prevent collisions and advance toward the objective. The Robot is capable of moving in a variety of environments. The Robot may communicate and travel in dynamic space by perceiving its surroundings and pursuing a free-collision route. This study covers creating a multi-agent system that includes fuzzy logic to regulate the robotic movements along a path reactive for effective Navigation. This project aims to develop an algorithm that allows the Robot to do distinct tasks to accomplish a unified objective, autonomous Navigation in a slightly unfamiliar environment. Under such a situation, the usage of a multi-agent system is advantageous. As a result, we created a framework made up of four agents responsible for sensing, Navigation, dynamic, and static obstacle avoidance. These agents communicate with one another via a coordinating mechanism.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.