Cytosolic DNA is characteristic of chromosomally unstable metastatic cancer cells, resulting in constitutive activation of the cGAS–STING innate immune pathway. How tumors co-opt inflammatory signaling while evading immune surveillance remains unknown. Here, we show that the ectonucleotidase ENPP1 promotes metastasis by selectively degrading extracellular cGAMP, an immune-stimulatory metabolite whose breakdown products include the immune suppressor adenosine. ENPP1 loss suppresses metastasis, restores tumor immune infiltration, and potentiates response to immune checkpoint blockade in a manner dependent on tumor cGAS and host STING. Conversely, overexpression of wild-type ENPP1, but not an enzymatically weakened mutant, promotes migration and metastasis, in part through the generation of extracellular adenosine, and renders otherwise sensitive tumors completely resistant to immunotherapy. In human cancers, ENPP1 expression correlates with reduced immune cell infiltration, increased metastasis, and resistance to anti–PD-1/PD-L1 treatment. Thus, cGAMP hydrolysis by ENPP1 enables chromosomally unstable tumors to transmute cGAS activation into an immune-suppressive pathway. Significance: Chromosomal instability promotes metastasis by generating chronic tumor inflammation. ENPP1 facilitates metastasis and enables tumor cells to tolerate inflammation by hydrolyzing the immunotransmitter cGAMP, preventing its transfer from cancer cells to immune cells. This article is highlighted in the In This Issue feature, p. 995
Highlights d Persister BRAF-mutant melanoma cells emerge during RAF and MEK inhibition d Persister cells escape cell-cycle arrest via sporadic receptordriven ERK pulses d ERK pulses arise spontaneously in neighboring cells via autocrine/paracrine signaling d Oncogenic vs. receptor-driven MAPK signaling are differentially sensitive to inhibitors
The estrogen receptor (ER) is implicated in the progression of breast cancer. Despite positive effects of hormonal therapy, initial or acquired resistance to endocrine therapies frequently occurs. Recent studies suggested ERα-coregulator PELP1 and growth factor receptor ErbB2/HER2 play an essential role in hormonal therapy responsiveness. Src axis couples ERα with HER2 and PELP1, thus representing a new pathway for targeted therapy resistance. To establish the significance of ER–Src axis in PELP1 and HER2 mediated therapy resistance, we have generated model cells that stably express Src-shRNA under conditions of PELP1, HER2 deregulation. Depletion of Src using shRNA substantially reduced E2 mediated activation of Src and MAPK activation in resistant model cells. Pharmacological inhibition of Src using dasatinib, an orally available inhibitor substantially inhibited the growth of therapy resistant MCF7–PELP1, MCF7–HER2, and MCF7–Tam model cells in proliferation assays. In post-menopausal xenograft based studies, treatment with dasatinib significantly inhibited the growth of therapy resistant cells. IHC analysis revealed that the tumors were ERα positive, and dasatinib treated tumors exhibited alterations in Src and MAPK signaling pathways. Combinatorial therapy of tamoxifen with dasatinib showed better therapeutic effect compared to single agent therapy on the growth of therapy resistant PELP1 driven tumors. The results from our study showed that ER–Src axis play an important role in promoting hormonal resistance by protooncogenes such as HER2, PELP1, and blocking this axis prevents the development of hormonal independence in vivo. Since PELP1, HER2, and Src kinase are commonly deregulated in breast cancers, combination therapies using both endocrine agents and dasatinib may have better therapeutic effect by delaying the development of hormonal resistance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.