Electrospun fiber materials are of scientific interest for use in multiple application areas. Charged fiber structures show enhanced properties as desired for some of these applications. One factor influencing the charge on the fiber structure that has not been explored is fiber alignment. Electrospun fiber structures, such as membranes, typically consist of randomly oriented fibers. Structural properties of the membranes such as mechanical strength are known to be affected by the random orientation of the fibers. It is suspected that fiber orientation may also affect the charge capacity of charged fiber structures. A few approaches to form electrospun yarns have been reported. Some of these approaches can also cause fibers to preferentially align along the yarn axis instead of assembling into a random structure. In this work, a rotating metal cone was used to collect Poly(vinylidene fluoride) electrospun fibers from which stretched yarns were drawn and twisted into yarns. The alignment of the fibers in the yarns was controllable to a degree that allowed exploration of the effect of alignment on charge. Long continuous oriented or random yarns of relatively uniform thickness were produced at a rate of about 10 m/h. The yarns were polarized by methods of heating, stretching, and poling. The results show that the fiber yarn formation process endows more charges to the fibers compared to the normal fiber membrane electrospinning and post polarization. This provides a facile route for the preparation of enhanced chargefunctionalized fiber structures for a wide range of applications.
Electrospun fibers are of interest in a number of applications due to their small size, simplicity of fabrication, and ease of modification of properties. Piezoelectric polymers such as Polyvinylidene Fluoride (PVDF) can be charged when formed in the electrospinning process. This chapter discusses fabrication of PVDF fiber mats and fiber yarns and the measurement of their charge using a custom-made Faraday bucket. The results show the measured charge per mass of fiber mats was greater than the values measured for the yarns of the same mass. The measured charges may be related to both mass and external surface areas of the mats and yarn samples. It was observed the area/mass ratios of the fiber yarns were more than 30% less than the fiber mats.
Thickness is an important characteristic parameter of electrospun submicron of fiber mats and membranes. The thickness of the mats directly influences performance properties such as permeability and is necessary when determining volumetric parameters such as porosity. Typical electrospun mats are very thin (less than 1 mm) and highly compressive due to the small diameter fibers, both of which make accurate measurements difficult when using conventional methods. An accurate measure of the thickness is desired for characterizing and comparing membrane performances. In this work, a thickness measurement instrument using laser interferometry has been designed to measure electrospun fiber mat thickness. A small disk is used to apply a small (reproducible) force applied across a reasonably small area of the fiber mat. A traversing pin moves to contact the disk and completes an electrical circuit to stop movement and determine the location of the disk relative to a reference plane. The fiber mat thickness is determined by measuring the difference in locations of the disk with and without the fiber mat between the disk and the reference plane. The prototype is simple to operate and user-friendly. Precision and accuracy of the prototype are discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.