Molecular-dynamics simulations of the classic Taylor experiment are performed to investigate some general trends of impact fragmentation at ultra-high striking velocities. The striking velocities of flat-ended, monocrystalline, nanoscale pillars (nanoprojectiles) range from 0.34 km/s (Mach 1) to 30 km/s to explore qualitative effects on the fragment mass distribution. These atomistic simulations offer insight into evolution of the fragment distribution and its dependence upon the striking velocity. According to the simulation results, distribution of the fragment masses following hypervelocity impacts of energy sufficient to ensure that the fragmentation problem is statistically well posed, is well represented by the bilinear (bimodal) exponential distribution commonly observed during high-energy homogeneous fragmentation events. At more moderate striking velocities, a mixing of fragments from different fragmentation intensity events-that is, the more pronounced statistical heterogeneity-results in the distribution of fragment masses that appears to follow the trilinear (trimodal) exponential distribution due to the occurrence of a large-fragment tail in addition to the bilinear exponential part. The maximum fragment mass is studied from the standpoint of the striking velocity as well as a set of state parameters: the instantaneous kinetic temperature and the selected stress and strain invariants; corresponding phenomenological relationships are suggested for the investigated hypervelocity impact range.
A series of molecular-dynamics simulations of the classic Taylor impact test is performed by using a flat-ended monocrystalline nanoscale projectile made of the Lennard-Jones two-dimensional solid. The nanoprojectile striking velocities range from 0.75 to 7 km/s. These atomistic simulations offer insight into nature of fragment distributions and evolution of state parameters. According to the simulation results, the cumulative distribution of fragment sizes in the course of this non-homogeneous fragmentation process for hypervelocity impacts appears to be well represented by the bimodal-exponential distribution commonly observed during high-energy uniform fragmentation events. For more moderate impact velocities, the cumulative distribution of fragment sizes, in addition to the bimodal-exponential part, exhibits a large-fragment tail. Temporal evolutions on instantaneous kinetic temperature, stress and strain invariants are presented and discussed. Scaling relations between temperature/temperature rate and kinematic rates of deformation are suggested.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.