Currently 247 million people are living with chronic hepatitis B virus infection (CHB), and the development of novel curative treatments is urgently needed. Immunotherapy is an attractive approach to treat CHB, yet therapeutic approaches to augment the endogenous hepatitis B virus (HBV)-specific T cell response in CHB patients have demonstrated little success. In this study, we show that strain 68-1 rhesus macaque (RM) CMV vaccine vectors expressing HBV Ags engender HBV-specific CD8 + T cells unconventionally restricted by MHC class II and the nonclassical MHC-E molecule in RM. Surface staining of human donor and RM primary hepatocytes (PH) ex vivo revealed the majority of PH expressed MHC-E but not MHC class II. HBV-specific, MHC-E-restricted CD8 + T cells from RM vaccinated with RM CMV vaccine vectors expressing HBV Ags recognized HBV-infected PH from both human donor and RM. These results provide proof-of-concept that MHC-E-restricted CD8 + T cells could be harnessed for the treatment of CHB, either through therapeutic vaccination or adoptive immunotherapy.
Hepatitis B virus has infected a third of the world’s population, and 296 million people are living with chronic infection. Chronic infection leads to progressive liver disease, including hepatocellular carcinoma and liver failure, and there remains no reliable curative therapy. These gaps in our understanding are due, in large part, to a paucity of animal models of HBV infection. Here, we show that rhesus macaques regularly clear acute HBV infection, similar to adult humans, but can develop long-term infection if immunosuppressed. Similar to patients, we longitudinally detected HBV DNA, HBV surface antigen, and HBV e antigen in the serum of experimentally infected animals. In addition, we discovered hallmarks of HBV infection in the liver, including RNA transcription, HBV core and HBV surface antigen translation, and covalently closed circular DNA biogenesis. This pre-clinical animal model will serve to accelerate emerging HBV curative therapies into the clinic.
CRISPR/Cas systems are some of the most promising tools for therapeutic genome editing. The use of these systems is contingent on the optimal designs of guides and homology-directed repair (HDR) templates. While this design can be achieved in silico, validation and further optimization are usually performed with the help of reporter systems. Here, we describe a novel reporter system, termed BETLE, that allows for the fast, sensitive, and cell-specific detection of genome editing and template-specific HDR by encoding multiple reporter proteins in different open-reading frames. Out-of-frame non-homologous end joining (NHEJ) leads to the expression of either secretable NanoLuc luciferase, enabling a highly sensitive and low-cost analysis of editing, or fluorescent mTagBFP2, allowing for the enumeration and tissue-specific localization of genome-edited cells. BETLE includes a site to validate CRISPR/Cas systems for a sequence-of-interest, making it broadly adaptable. We evaluated BETLE using a defective moxGFP with a 39-base-pair deletion and showed spCas9, saCas9, and asCas12a editing as well as sequence-specific HDR and the repair of moxGFP in cell lines with single and multiple reporter integrants. Taken together, these data show that BETLE allows for the rapid detection and optimization of CRISPR/Cas genome editing and HDR in vitro and represents a state-of the art tool for future applications in vivo.
Yellow fever virus (YFV) is a reemerging global health threat, driven by several factors, including increased spread of the mosquito vector and rapid urbanization. Although a prophylactic vaccine exists, vaccine hesitancy, supply deficits, and distribution difficulties leave specific populations at risk of severe YFV disease, as evidenced by recent outbreaks in South America. To establish a treatment for patients with severe YFV infection, we tested 37 YFV-specific monoclonal antibodies isolated from vaccinated humans and identified two capable of potently neutralizing multiple pathogenic primary YFV isolates. Using both hamster and nonhuman primate models of lethal YFV infection, we demonstrate that a single administration of either of these two potently neutralizing antibodies during acute infection fully controlled viremia and prevented severe disease and death in treated animals. Given the potential severity of YFV-induced disease, our results show that these antibodies could be effective in saving lives and fill a much-needed void in managing YFV cases during outbreaks.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.