The steering system in autonomous vehicles is an essential issue that must be addressed. Appropriate control will result in a smooth and risk-free steering system. Compared to other types of controls, type-2 fuzzy logic control has the advantage of dealing with uncertain inputs, which are common in autonomous vehicles. This paper proposes a novel method for the steering control of autonomous vehicles based on type-2 fuzzy logic control combined with PI control. The primary control, type-2 fuzzy logic control, has three inputs—distance, navigation, and speed. The fuzzy system’s output is the steering angle value. This was used as input for the secondary control, PI control. This control is in charge of adjusting the motor’s position as a manifestation of the steering angle. The study results applied to the EPS system of autonomous vehicles revealed that type-2 fuzzy logic control and PI control produced better and smoother control than type-1 fuzzy logic control and PI. The slightest disturbance in the type-1 fuzzy logic control showed a significant change in steering, while this did not occur in the type-2 fuzzy logic control. The results indicate that type-2 fuzzy logic control and PI control could be used for autonomous vehicles by maintaining the comfort and safety of the users.
Noise is a problem often found in daily life. Noise also make people could not concentrate to do their work. Efforts to reduce noise have been proposed, but, due to variety of the noise’s characteristics, every noise problem requires different solution. This research aim to cancel the vehicle’s noise while maintaining the information heard. These conditions happened in the hospitals classrooms, or work room near the roadway. The vehicle’s noise change very fast, so the adaptive system is the good solution candidate for solving this problem. On the beginning, the simulation process had the trouble with the iterations. Matlab software only can execute the certain range of iteration. It could not cancel the noise, even the information becomes criptic. The problem is how to cancell the vehicle’s noise with the restriction software and still manage the important information. This research will modify the LMS adaptive algorithm so that the iteration could be done by the system and the main goal of the research could be reached. The modification of the algorithm is based on the filter length (L) used to adapt with the noise. Therefore, this research conducted simulation of the Adaptive Noise Cancelling with two process steps. The output of the first adaptive process have the.same characteristics with the noise that would be cancelled, thus the first adaptive process have the error near to zero. The second adaptive process changes the input by the output of the first process and mix the information into the noise. Error occured in the final process is the information heard as the dominant output.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.