The frequency of arboviral disease epidemics is increasing and vector control remains the primary mechanism to limit arboviral transmission. Container inhabiting mosquitoes such as Aedes albopictus and Aedes aegypti are the primary vectors of dengue, chikungunya, and Zika viruses. Current vector control methods for these species are often ineffective, suggesting the need for novel control approaches. A proposed novel approach is autodissemination of insect growth regulators (IGRs). The advantage of autodissemination approaches is small amounts of active ingredients compared to traditional insecticide applications are used to impact mosquito populations. While the direct targeting of cryptic locations via autodissemination seems like a significant advantage over large scale applications of insecticides, this approach could actually affect nontarget organisms by delivering these highly potent long lasting growth inhibitors such as pyriproxyfen (PPF) to the exact locations that other beneficial insects visit, such as a nectar source. Here we tested the hypothesis that PPF treated male Ae. albopictus will contaminate nectar sources, which results in the indirect transfer of PPF to European honey bees (Apis mellifera). We performed bioassays, fluorescent imaging, and mass spectrometry on insect and artificial nectar source materials to examine for intra- and interspecific transfer of PPF. Data suggests there is direct transfer of PPF from Ae. albopictus PPF treated males and indirect transfer of PPF to A. mellifera from artificial nectar sources. In addition, we show a reduction in fecundity in Ae. albopictus and Drosophila melanogaster when exposed to sublethal doses of PPF. The observed transfer of PPF to A. mellifera suggests the need for further investigation of autodissemination approaches in a more field like setting to examine for risks to insect pollinators.
Controlling container inhabiting mosquitoes such as Aedes aegypti and Ae. albopictus is often difficult because of the requirement to treat small and inaccessible cryptic sources of water where larvae are located. Autodissemination approaches based on the dissemination of insect growth regulators (IGRs) have been demonstrated as an effective means to treat these cryptic larval habitats and provide population control. Autodissemination approaches are attractive because they are based on the mosquitoes disseminating small amounts of IGRs compared to more traditional insecticide applications. While dissemination of small amounts of IGRs seems like an advantage, these approaches could lead to unintended transfer and effects on nontarget insect pollinators by delivering highly potent IGRs to nectar sources. Here we looked for the indirect and direct transfer of pyriproxyfen (PPF) to natural and artificial nectar sources and painted lady butterflies, Vanessa cardui, in semifield cages using the release of treated Ae. albopictus males or an autodissemination station. We also performed persistence tests of PPF in oviposition containers and natural and artificial nectar sources when exposed to laboratory and natural conditions. The data suggest that there is direct and indirect transfer to nectar sources and V. cardui associated with the use of autodissemination approaches. We discuss the results in the context of using autodissemination approaches for mosquito control and the potential risks these approaches may pose to nontarget insect pollinators.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.