We present a theoretical model of laser heating carbon nanotubes to determine the temperature profile during laser irradiation. Laser heating carbon nanotubes is an essential physics phenomenon in many aspects such as materials science, pharmacy, and medicine. In the present article, we explain the applications of carbon nanotubes for photoacoustic imaging contrast agents and photothermal therapy heating agents by evaluating the heat propagation in the carbon nanotube and its surrounding. Our model is constructed by applying the classical heat conduction equation. To simplify the problem, we assume the carbon nanotube is a solid cylinder with the length of the tube much larger than its diameter. The laser spot is also much larger than the dimension of carbon nanotubes. Consequently, we can neglect the length of tube dependence. Theoretically, we show that the temperature during laser heating is proportional to the diameter of carbon nanotube. Based on the solution of our model, we suggest using the larger diameter of carbon nanotubes to maximize the laser heating process. These results extend our understanding of the laser heating carbon nanotubes and provide the foundation for future technologically applying laser heating carbon nanotubes.
Echodynamography (EDG) is a computational method to estimate and visualize two-dimensional flow velocity vectors by applying dynamic flow theories to color Doppler echocardiography. The EDG method must be validated if applied to human cardiac flow function. However, a few studies of flow estimated have compared by EDG to the flow data were acquired by other methods. In this study, EDG was validated by comparing the analysis of estimating and visualizing flow velocity vectors obtained by original particle image velocimetry (PIV) based on a left ventricular (LV) phantom hydrogel (in vitro studies) and by EDG based on the virtual Doppler velocity. Velocity measured by PIV method and velocity estimated by EDG method in the perpendicular direction and the radial direction were compared. Regression analysis for the velocity estimated in the radial direction revealed an excellent correlation ([Formula: see text], slope = 0.96) and moderate correlation in the perpendicular direction ([Formula: see text], slope = 0.46). As revealed by the Bland–Altman plot, however, overestimations and higher relative error were observed in the perpendicular direction (0.51 ± 2.75 mm/s) and in the radial direction (–2.15 ± 21.13 mm/s). The percentage error of the norm-wise relative error of the velocity discrepancy is less than [Formula: see text], and velocity magnitude followed the same trends and are of comparable magnitude. These findings indicate that good estimates of velocity can be obtained by the EDG method. Therefore, the EDG method was appropriate for estimating and visualizing velocity vectors in clinical studies for higher measurement accuracy and reliability. The clinical in vivo application showed that the EDG method has the ability to visualize blood flow velocity vectors and differentiate the clinical information of vortex parameters both in normal and abnormal LV subjects. In conclusion, the EDG method has potentially greater clinical acceptance as a tool assessment of LV during the cardiac cycle.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.