Laboratory assistants in universities are usually active students who are recruited to help lecturers implement theoretical courses given by lecturers in class. Assistant recruitment is carried out to screen students who have talent in teaching, because in addition to assisting lecturers in providing practical material, becoming an assistant is a way to measure personal abilities that have talent in teaching. This study applies the profile matching method by determining the gap value which is the difference between the candidate values and the standard that has been set between the profile data from the selected assistant candidates. The purpose of applying this profile matching method is to get an assistant that is in accordance with the main and supporting factors that the reviewer will determine in each selection. Calculation using the profile matching method gives different weights to each criterion, so that the criteria have weights according to the type or standard of interest. This study uses a prototype method that involves the user in the analysis process. This study resulted in a calculation method using the profile matching method by determining each criterion weight, then classifying or dividing criteria into core factors and secondary factors which ultimately resulted in the total amount of the whole, and then ranking.Keywords : Assistant, Profile Matching, decision making, core factors, secondary factors.Asisten laboratorium di perguruan tinggi biasanya merupakan mahasiswa aktif yang direkrut untuk membantu dosen mengimplementasikan mata kuliah teori yang diberikan dosen dikelas. Rekrutmen asisten dilakukan untuk menyaring mahasiswa yang memiliki bakat dalam mengajar, karena selain untuk membantu dosen dalam memberikan materi praktikum, menjadi asisten adalah cara untuk mengukur kemampuan personal yang memiliki bakat dalam mengajar. Penelitian ini menerapkan metode profile matching dengan menentukan nilai gap yang merupakan selisih nilai calon dengan standar yang sudah ditetapkan antara profil data dari calon asisten yang diseleksi. Tujuan dari penerapan metode profile matching ini adalah untuk mendapatkan asisten yang sesuai dengan faktor utama dan pendukung yang akan ditentukan reviewer setiap seleksi dilakukan. Perhitungan menggunakan metode profile matching memberikan bobot berbeda pada setiap kriteria, agar kriteria mempunyai bobot sesuai dengan tipe atau standar kepentingannya. Penelitian ini menggunakan metode prototype yang melibatkan user dalam proses analisis. Penelitian ini menghasilkan cara perhitungan menggunakan metode profile matching dengan menentukan setiap bobot kriteria, kemudian mengelompokkan atau membagi kriteria menjadi core factor dan secondary factor yang akhirnya menghasilkan jumlah total dari keseluruhan, dan kemudian dilakukan perankingan.Kata Kunci : Asisten, Profile Matching, pengambilan keputusan, core factor, secondary factor
Laboratory assistant in university are the main factors in determining the course of practical in the laboratory. So it needs to be selected to get an assistant with good competence. Assistant selection is done by assessing four aspects namely administration, competence, microteaching, and interview. So far the assessment is still done manually, the criteria value still has the same importance. The calculation method which is also not optimal has an impact on the results and the long time of decision making. So we need a method to overcome these problems. In this study the calculation methods used are Profile Matching and SMART (Simple Multi Attribute Rating Technique). Based on research conducted both methods work by grouping criteria according to their level of importance. There are 12 criteria divided into four aspects, and alternative data of 7 participants were taken from 2019 participant data. The results of the two methods are ranking sequences compared with ranking results in 2019 selection. The results of this study show better profile matching because it has an accuracy value 100% is exactly the same as the results of the previous selection, while SMART is only 42.8%.
Teknologi anti forensik telah menjadi perhatian utama para pengembang aplikasi instant messaging sebagai salah satu faktor untuk menentukan tingkat kerentanan atau vulnerability aplikasinya. Penelitian ini dilakukan agar dapat mengetahui nilai kerentanan instant messaging Skype, WhatsApp, dan Telegram berbasis web dari hasil komparatif teknologi anti forensiknya masing-masing aplikasi tersebut. Metode Association of Chief Police Officers (ACPO) dipilih sebagai acuan dalam melakukan tahapan-tahapan penelitian ini. Plan, capture, analysis, present merupakan tahapan penelitian dari metode Association of Chief Police Officers (ACPO). Data digital berupa gambar, teks percakapan, video, ID user, dan nomor telepon digunakan sebagai parameter dalam proses penelitian. Parameter-parameter tersebut diakuisisi dari masing-masing instant messaging menggunakan tools FTK imager dan Fiddler. Hasil yang diperoleh dari penelitian ini menunjukkan aplikasi instant messaging Skype mempunyai nilai kerentanan sebesar 97%, sedangkan aplikasi instant messaging Telegram dan WhatsApp mempunyai nilai kerentanan yang sama sebesar 66% berdasarkan seluruh data digital yang diperoleh dari proses akuisisi.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.