Pathogenesis-related 10 protein families (PgPR10 proteins) from ginseng are reported to have ribonuclease activity, conferring defense-related resistance against various stresses. Homology-based PCR using PgPR10-2 specific primers allowed for the isolation of two additional PgPR10 genes. PgPR10-1 is identical to the previously reported ribonuclease 1, while PgPR10-3 is a newly-discovered protein, suggesting that the PgPR10s are a multi-gene family. Differential organ-specific transcripts of PgPR10-1 and PgPR10-2 in the flower bud and root, respectively, indicate that there are tissue-specific functional roles for this gene family. Overexpression of PgPR10-2 in Arabidopsis conferred longer root length and a tolerant growth phenotype on NaCl-supplemented media. Further changes in transcriptional levels against sets of abiotic stressors suggest similar functional roles of PgPR10-1 in the root and predominantly in the flower organ based on its higher expression levels. Overall, this suggests that the manipulation of PgPR10 genes in plants can be used as valuable tool to enhance its physiological status.
The effect of exogenously applied hydrogen peroxide on salt stress tolerance was investigated in Panax ginseng. Pretreatment of ginseng seedlings with 100 μM H2O2 increased the physiological salt tolerance of the ginseng plant and was used as the optimum concentration to induce salt tolerance capacity. Treatment with exogenous H2O2 for 2 days significantly enhanced salt stress tolerance in ginseng seedlings by increasing the activities of ascorbate peroxidase, catalase and guaiacol peroxidase and by decreasing the concentrations of malondialdehyde (MDA) and endogenous H2O2 as well as the production rate of superoxide radical (O2(-)). There was a positive physiological effect on the growth and development of salt-stressed seedlings by exogenous H2O2 as measured by ginseng dry weight and both chlorophyll and carotenoid contents. Exogenous H2O2 induced changes in MDA, O2(-), antioxidant enzymes and antioxidant compounds, which are responsible for increases in salt stress tolerance. Salt treatment caused drastic declines in ginseng growth and antioxidants levels; whereas, acclimation treatment with H2O2 allowed the ginseng seedlings to recover from salt stress by up-regulation of defense-related proteins such as antioxidant enzymes and antioxidant compounds.
The differential transcript patterns of five antioxidant genes, four genes related to the ginsenoside pathway and five P450 genes related to defense mechanism were investigated in in vitro adventitious roots of Panax ginseng after exposure to two different concentrations of heavy metals for 7 days. PgSOD-1 and PgCAT transcription increased in a dose-dependent manner during the exposure to CuCl(2), NiCl(2), and CdCl(2), while all other tested scavenging enzymes didn't show significant increase during heavy metal exposure. Conversely, the mRNA transcripts of PgSQE, PgDDS were highly responsive to CuCl(2) compared to NiCl(2) exposure. However, the transcript profile of Pgβ-AS was highly induced upon NiCl(2) treatment compared to CuCl(2) and CdCl(2) exposure. The expressions of PgCYP716A42, PgCYP71A50U, and PgCYP82C22 were regulated in similar manners, and all showed the highest transcript profile at 100 μM of CuCl(2), CdCl(2), and NiCl(2) except PgCYP71D184, which showed the highest transcript level when subjected to 10 μM CuCl(2) and NiCl(2). Thus it may suggest that in P. ginseng heavy metal interaction on cell membrane induced expression of various defense related genes via jasmonic acid pathway and also possesses cross talk networks with other defense related pathways.
Upon mechanical wounding, plants locally induce necrosis, accumulate methyl jasmonate (MeJA) and acquire systemic resistance in nearby tissues. One-monthold in vitro grown Panax ginseng seedlings were treated with either 50 lM MeJA or mechanical wounding alone or a combination of both, to evaluate jasmonic acid (JA) signaling and terpene biosynthetic pathway genes along with terpenoid accumulation. After MeJA treatment, JA pathway genes, such as lipoxygenase (PgLOX), hydrogen peroxidase lyase (PgHPL), allene oxide synthase (PgAOS), and allene oxide cyclase (PgAOC1), and terpene pathway genes, such as isopentenyl diphosphate isomerase (PgIPP) and farnesyl diphosphate synthase (PgFPS), were highly expressed and resulted in the accumulation of mono-and sesquiterpenes. During mechanical wounding, PgLOX expression was induced relatively late after 72 h of treatment, however PgAOC1 was not induced. This resulted in decreased production of MeJA that in turn may have lowered terpenoid production. In contrast, wounding ? MeJA treatment increased PgAOC1 and PgLOX gene expression earlier after 6 h and slowly promoted the production of mono-and sesquiterpenes. Furthermore, we monitored the effect of MeJA upon wounding in in vitro grown 1-month-old seedlings treated with MeJA ? wounding. These result demonstrated that exogenous MeJA is able to promote recovery from the wounding effect by functioning as a long distance signal. Additionally, these results suggest that exogenous MeJA supplied at the time of mechanical wounding prevents necrosis in the ginseng leaves by increasing the production of terpenoids.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.