We present a combined experimental and theoretical investigation of formaldehyde (H2CO) dissociation to H2 and CO at energies just above the threshold for competing H elimination. High-resolution state-resolved imaging measurements of the CO velocity distributions reveal two dissociation pathways. The first proceeds through a well-established transition state to produce rotationally excited CO and vibrationally cold H2. The second dissociation pathway yields rotationally cold CO in conjunction with highly vibrationally excited H2. Quasi-classical trajectory calculations performed on a global potential energy surface for H2CO suggest that this second channel represents an intramolecular hydrogen abstraction mechanism: One hydrogen atom explores large regions of the potential energy surface before bonding with the second H atom, bypassing the saddle point entirely.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.