Summary
An adaptive scheme to generate reduced‐order models for parametric nonlinear dynamical systems is proposed. It aims to automatize the proper orthogonal decomposition (POD)‐Greedy algorithm combined with empirical interpolation. At each iteration, it is able to adaptively determine the number of the reduced basis vectors and the number of the interpolation basis vectors for basis construction. The proposed technique is able to derive a suitable match between the RB and the interpolation basis vectors, making the generation of a stable, compact and reliable ROM possible. This is achieved by adaptively adding new basis vectors or removing unnecessary ones, at each iteration of the greedy algorithm. An efficient output error indicator plays a key role in the adaptive scheme. We also propose an improved output error indicator based on previous work. Upon convergence of the POD‐Greedy algorithm, the new error indicator is shown to be sharper than the existing ones, implicating that a more reliable ROM can be constructed. The proposed method is tested on several nonlinear dynamical systems, namely, the viscous Burgers' equation and two other models from chemical engineering.
Accurate error estimation is crucial in model order reduction, both to obtain small reduced-order models and to certify their accuracy when deployed in downstream applications such as digital twins. In existing a posteriori error estimation approaches, knowledge about the time integration scheme is mandatory, e.g., the residual-based error estimators proposed for the reduced basis method. This poses a challenge when automatic ordinary differential equation solver libraries are used to perform the time integration. To address this, we present a data-enhanced approach for a posteriori error estimation. Our new formulation enables residual-based error estimators to be independent of any time integration method. To achieve this, we introduce a corrected reduced-order model which takes into account a data-driven closure term for improved accuracy. The closure term, subject to mild assumptions, is related to the local truncation error of the corresponding time integration scheme. We propose efficient computational schemes for approximating the closure term, at the cost of a modest amount of training data. Furthermore, the new error estimator is incorporated within a greedy process to obtain parametric reduced-order models. Numerical results on three different systems show the accuracy of the proposed error estimation approach and its ability to produce ROMs that generalize well.
We present a subsampling strategy for the offline stage of the Reduced Basis Method. The approach is aimed at bringing down the considerable offline costs associated with using a finely-sampled training set. The proposed algorithm exploits the potential of the pivoted QR decomposition and the discrete empirical interpolation method to identify important parameter samples. It consists of two stages. In the first stage, we construct a low-fidelity approximation to the solution manifold over a fine training set. Then, for the available low-fidelity snapshots of the output variable, we apply the pivoted QR decomposition or the discrete empirical interpolation method to identify a set of sparse sampling locations in the parameter domain. These points reveal the structure of the parametric dependence of the output variable. The second stage proceeds with a subsampled training set containing a by far smaller number of parameters than the initial training set. Different subsampling strategies inspired from recent variants of the empirical interpolation method are also considered. Tests on benchmark examples justify the new approach and show its potential to substantially speed up the offline stage of the Reduced Basis Method, while generating reliable reduced-order models.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.