Medical image datasets are usually imbalanced due to the high costs of obtaining the data and time-consuming annotations. Training a deep neural network model on such datasets to accurately classify the medical condition does not yield the desired results as they often over-fit the majority class samples’ data. Data augmentation is often performed on the training data to address the issue by position augmentation techniques such as scaling, cropping, flipping, padding, rotation, translation, affine transformation, and color augmentation techniques such as brightness, contrast, saturation, and hue to increase the dataset sizes. Radiologists generally use chest X-rays for the diagnosis of pneumonia. Due to patient privacy concerns, access to such data is often protected. In this study, we performed data augmentation on the Chest X-ray dataset to generate artificial chest X-ray images of the under-represented class through generative modeling techniques such as the Deep Convolutional Generative Adversarial Network (DCGAN). With just 1341 chest X-ray images labeled as Normal, artificial samples were created by retaining similar characteristics to the original data with this technique. Evaluating the model resulted in a Fréchet Distance of Inception (FID) score of 1.289. We further show the superior performance of a CNN classifier trained on the DCGAN augmented dataset.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.