Catfishes of the family Pangasiidae are an important group that contributes significantly to the fisheries of the Mekong River basin. In recent times the populations of several catfish species have declined, thought to be due to overfishing and habitat changes brought about by anthropogenic influences. The Mekong giant catfish Pangasianodon gigas Chevey, 1913 is listed as Critically Endangered on the IUCN Red List. In the present study, we assessed the level of genetic diversity of nine catfish species using sequences of the large subunit of mitochondrial DNA (16S rRNA). Approximately 570 base pairs (bp) were sequenced from 672 individuals of nine species. In all species studied, haplotype diversity and nucleotide diversity ranged from 0.118 AE 0.101 to 0.667 AE 0.141 and from 0.0002 AE 0.0003 to 0.0016 AE 0.0013, respectively. Four haplotypes were detected among 16 samples from natural populations of the critically endangered Mekong giant catfish. The results, in spite of the limited sample size for some species investigated, indicated that the level of genetic variation observed in wild populations of the Mekong giant catfish (haplotype diversity = 0.350 AE 0.148, nucleotide diversity = 0.0009 AE 0.0008) is commensurate with that of some other related species. This finding indicates that (1) wild populations of the Mekong giant catfish might be more robust than currently thought or (2) present wild populations of this species carry a genetic signature of the historically larger population(s). Findings from this study also have important implications for conservation of the Mekong giant catfish, especially in designing and implementing artificial breeding programme for restocking purposes.
The Mekong giant catfish Pangasianodon gigas is endemic to the Mekong River and is a critically endangered species. The genotypes of the microsatellite DNA (msDNA) and mitochondrial DNA (mtDNA) markers (right domain of the control region) were detected to evaluate the present status of genetic divergence of this species from the Mekong River in Thailand and Cambodia. The observed and expected heterozygosity values of Mekong giant catfish in Thailand and Cambodia were relatively low in comparison with those of other nonendangered freshwater fish species. These two populations from Thailand and Cambodia showed similar levels of genetic diversity, as evaluated by the 384 nucleotides of the mtDNA control region with 13 haplotypes. The pairwise FST value between the two populations based on the genotype frequencies of msDNA and mtDNA markers suggested a close genetic relationship between the populations in Thailand and Cambodia. The results of this study support the conclusion that the Mekong giant catfish is critically endangered. Care should be taken to sustain the genetic diversity of this species, as the level of genetic variability has already decreased in the wild population. This species is a target species for an ongoing stock enhancement program in the Mekong River in Thailand. It is proposed to apply these markers for proper broodstock management, such as for minimal kinship selective breeding in the hatchery.
Sequence variation of the mitochondrial DNA 16S rRNA region of the Asian moon scallop, Amusium pleuronectes, was surveyed in seven populations along the coast of Thailand. A total of 16 unique haplotypes were detected among 174 individuals with a total 27 variable sites out of 534 bp sequenced. The mitochondrial haplotypes grouped into two distinct arrays (estimated to differ by about 2.62% to 2.99% nucleotide divergence) that characterized samples collected from the Gulf of Thailand versus the Andaman Sea. Low levels of intrapopulation variation were observed, while in contrast, significant divergence was observed between populations from the Gulf of Thailand and Andaman Sea. Results of AMOVA reveal a high F (ST) value (0.765) and showed that the majority of the total genetic variance (76.03%) occurred among groups (i.e., Andaman Sea and the Gulf of Thailand) and little among populations within the group (0.52%) and within populations (23.45%). The genetic differentiation between the populations recorded in the present study is similar to that observed in a variety of marine species in the Indo-Pacific. The implications of the findings for management of A. pleuronectes genetic resources in Thailand are discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.