Progranulin (PGRN) deficiency is linked to neurodegenerative diseases including frontotemporal dementia, Alzheimers disease, Parkinsons disease, and neuronal ceroid lipofuscinosis. Proper PGRN levels are critical to maintain brain health and neuronal survival, however the function of PGRN is not well understood. PGRN is composed of 7.5 tandem repeat domains, called granulins, and is proteolytically processed into individual granulins inside the lysosome. The neuroprotective effects of full-length PGRN are well-documented, but the role of granulins is still unclear. Here we report, for the first time, that expression of single granulins is sufficient to rescue the full spectrum of disease pathology in mice with complete PGRN deficiency (Grn-/-). Specifically, rAAV delivery of either human granulin-2 or granulin-4 to Grn-/- mouse brain ameliorates lysosome dysfunction, lipid dysregulation, microgliosis, and lipofuscinosis similar to full-length PGRN. These findings support the idea that individual granulins are the functional units of PGRN, likely mediate neuroprotection within the lysosome, and highlight their importance for developing therapeutics to treat FTD-GRN and other neurodegenerative diseases.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.