Cochannel interference occurs when two or more signals overlap in frequency and are present concurrently. Unlike in spread-spectrum multiple-access systems where the different users necessarily share the same channel, cochannel interference is a severe hindrance to frequency-and time-division multipleaccess communications, and is typically minimized by interference rejection/suppression techniques. In this paper, rather than using interference suppression, we are interested in the joint estimation of the information-bearing narrow-band cochannel signals. Novel joint estimators are proposed that employ a singleinput demodulator with oversampling to compensate for timing uncertainties. Assuming finite impulse-response channel characteristics, maximum likelihood (ML) and maximum a posteriori (MAP) criteria are used to derive cochannel detectors of varying complexities and degrees of performance. In particular, a (suboptimal) two-stage joint MAP symbol detector (JMAPSD) is introduced that has a lower complexity than the single-stage estimators while accruing only a marginal loss in error-rate performance at high signal-to-interference ratios. Assuming only reliable estimates of the primary and secondary signal powers, a blind adaptive JMAPSD algorithm for a priori unknown channels is also derived. The performance of these nonlinear joint estimation algorithms is studied through example computer simulations for two cochannel sources.
This paper presents the design and test of a simple active near-infrared sparse detector imaging sensor. The prototype of the sensor is novel in that it can capture remarkable silhouettes or profiles of a wide-variety of moving objects, including humans, animals, and vehicles using a sparse detector array comprised of only sixteen sensing elements deployed in a vertical configuration. The prototype sensor was built to collect silhouettes for a variety of objects and to evaluate several algorithms for classifying the data obtained from the sensor into two classes: human versus non-human. Initial tests show that the classification of individually sensed objects into two classes can be achieved with accuracy greater than ninety-nine percent (99%) with a subset of the sixteen detectors using a representative dataset consisting of 512 signatures. The prototype also includes a Webservice interface such that the sensor can be tasked in a network-centric environment. The sensor appears to be a low-cost alternative to traditional, high-resolution focal plane array imaging sensors for some applications. After a power optimization study, appropriate packaging, and testing with more extensive datasets, the sensor may be a good candidate for deployment in vast geographic regions for a myriad of intelligent electronic fence and persistent surveillance applications, including perimeter security scenarios.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.