OBJECTIVE The middle clinoid process (MCP) is a bony projection that extends from the sphenoid bone near the lateral margin of the sella turcica. The varied prevalence and morphological features of the MCP in populations stratified by age, race, and sex are unknown; however, the knowledge of its anatomy and preoperative recognition on CT scans can aid greatly in complication avoidance and management. The aim of this study was to further illustrate the surgical anatomy of the parasellar region and to quantify the incidence of MCP and caroticoclinoid rings (CCRs) in dried preserved human anatomical specimens. METHODS The presence, dimensions, morphological classification (incomplete, contact, and CCR), and intracranial relations of the MCP were measured in 2726 dried skull specimens at the Hamann-Todd Osteological Collection at the Cleveland Museum of Natural History. Specific morphometric data points were recorded from each of these hemiskulls, and categorized based on age, sex, and ethnicity. Linear and logistic regressions were used to determine associations between explanatory variables and MCP morphology. Computed tomography scans of the skull specimens were obtained to explore radiological landmarks for different types of MCPs. Illustrative intraoperative videos were also analyzed in the light of these crucial surgical landmarks. RESULTS The sample included 2250 specimens from males and 476 from females. Specimens were classified as either "white" (60.5%) or "black" (39.2%). An MCP was found in 42% of specimens, with 60% of those specimens presenting bilaterally. Fully ossified CCR comprised 27% of all MCPs, and contact (defined as contact without ossification between MCP and anterior clinoid process) comprised 4% of all MCPs. White race (relative to black race) and increasing age were significant predictors of MCP presence (p < 0.001). White race was significantly associated with greater average MCP height (p < 0.001). Among skulls with CCR, both male sex and older age (> 70 years relative to < 50 years) were associated with increased CCR diameter (p < 0.001). No other significant predictors or associations were observed. The CT scans of skulls replicated and validated the authors' morphometric observations on incomplete, contact, and CCR patterns adequately. The surgical strategies of clinoid bone removal are validated, with appropriate video illustrations. CONCLUSIONS Variations in the patterns of bony MCPs can pose a significant risk for injury to the internal carotid artery during parasellar procedures, especially those involving clinoidectomy and optic strut drilling. Understanding parasellar anatomy, especially on skull-base CT imaging, may be integral to surgical planning and preoperative risk counseling in both transcranial and extended endonasal procedures, as well as to preparing for complications management perioperatively.
Objective The aim of this study is to determine feasibility of incorporating three-dimensional (3D) tractography into routine skull base surgery planning and analyze our early clinical experience in a subset of anterior cranial base meningiomas (ACM). Methods Ninety-nine skull base endonasal and transcranial procedures were planned in 94 patients and retrospectively reviewed with a further analysis of the ACM subset. Main Outcome Measures (1) Automated generation of 3D tractography; (2) co-registration 3D tractography with computed tomography (CT), CT angiography (CTA), and magnetic resonance imaging (MRI); and (3) demonstration of real-time manipulation of 3D tractography intraoperatively. ACM subset: (1) pre- and postoperative cranial nerve function, (2) qualitative assessment of white matter tract preservation, and (3) frontal lobe fluid-attenuated inversion recovery (FLAIR) signal abnormality. Results Automated 3D tractography, with MRI, CT, and CTA overlay, was produced in all cases and was available intraoperatively. ACM subset: 8 (44%) procedures were performed via a ventral endoscopic endonasal approach (EEA) corridor and 12 (56%) via a dorsal anteromedial (DAM) transcranial corridor. Four cases (olfactory groove meningiomas) were managed with a combined, staged approach using ventral EEA and dorsal transcranial corridors. Average tumor volume reduction was 90.3 ± 15.0. Average FLAIR signal change was –30.9% ± 58.6. 11/12 (92%) patients (DAM subgroup) demonstrated preservation of, or improvement in, inferior fronto-occipital fasciculus volume. Functional cranial nerve recovery was 89% (all cases). Conclusions It is feasible to incorporate 3D tractography into the skull base surgical armamentarium. The utility of this tool in improving outcomes will require further study.
Endoscopic approaches and techniques to the anterior skull base, sellar, and parasellar regions have contributed significantly to the field of skull base surgery, facilitating the resection of complex skull base lesions with a minimal surgical footprint. The most clinically significant complication with these approaches has been the incidence of postoperative cerebrospinal fluid (CSF) leak. 1 Once the initial feasibility and efficacy were established, demonstrating improved neurological outcomes, reconstruction, CSF leaks became the primary challenge. The expanded endoscopic endonasal approach (EEA) followed the same progression as open skull base surgery such that reconstruction from grafts to vascularized flaps allowed a concomitant reduction in CSF leak rates, which are now in the range of 1 to 5%. [2][3][4] The EEAs have been organized into the following corridors along the coronal and sagittal planes, which span the entire ventral anterior, middle, and posterior cranial fossa, providing access via a series of modular approaches; specifically, the transfrontal, transcribriform, transplanum-transtuberculum, transsellar, transclival, transodontoid, and respective coronal modules. 5 The reconstruction is primarily dependent on the anatomic region and module undertaken relative to the availability of local and regional vascularized pedicled flaps. Several attempts at categorizing reconstruction options have been described, the most notable is by Patel et al. 6 There exists significant literature on the use of grafts, and as stated, as the EEA approaches evolved, so has the reconstruction from grafts to flaps. To avoid reiteration, in this article, we outline a pragmatic algorithmic approach focused exclusively on vascularized flap reconstruction; explicitly, we share with the readers our specific reconstruction algorithm that we have been using over the past decade to AbstractThe success of expanded endoscopic endonasal approaches (EEAs) to the anterior skull base, sellar, and parasellar regions has been greatly aided by the advancement in reconstructive techniques. In particular, the pedicled vascularized flaps have been developed and effectively cover skull base defects of varying sizes with a significant reduction in postoperative CSF leaks. There are two aims to this review: (1) We will provide our current, simplified reconstruction algorithm. (2) We will describe, in detail, the relevant anatomy, indications/contraindications, and surgical technique, with a particular emphasis on the nasoseptal flap (NSF). The inferior turbinate flap (ITF), middle turbinate flap (MTF), pericranial flap (PCF), and temporoparietal fascial flap (TPFF) will also be described. The NSF should be the primary option for reconstruction of majority of skull base defects following endonasal endoscopic surgery. In general, for the planum, cribriform, and upper two-thirds of the clivus, the NSF is ideal. For the lower-third of the clivus, the NSF may not be adequate and may require additional reconstructive options. Although limited in...
BACKGROUND Prostate specific antigen (PSA) is a well known biomarker for early diagnosis and management of prostate cancer. Furthermore, PSA has been documented to have anti-angiogenic and anti-tumorigenic activities in both in vitro and in vivo studies. However, little is known about the molecular mechanism(s) involved in regulation of these processes, in particular the role of the serine-protease enzymatic activity of PSA. METHODS Enzymatic activity of PSA isolated directly from seminal plasma was inhibited specifically (>95%) by incubation with zinc2+. Human umbilical vein endothelial cells (HUVEC) were utilized to compare/contrast the physiological effects of enzymatically active versus inactive PSA. RESULTS Equimolar concentrations of enzymatically active PSA and PSA enzymatically inactivated by incubation with Zn2+ had similar physiological effects on HUVEC, including inhibiting the gene expression of pro-angiogenic growth factors, like VEGF and bFGF, and up-regulation of expression of the anti-angiogenic growth factor IFN-γ; suppression of mRNA expression for markers of blood vessel development, like FAK, FLT, KDR, TWIST-1; P-38; inhibition of endothelial tube formation in the in vitro Matrigel Tube Formation Assay; and inhibition of endothelial cell invasion and migration properties. DISCUSSION Our data provides compelling evidence that the transcriptional regulatory and the anti-angiogenic activities of human PSA are independent of the innate enzymatic activity
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.