Asthma and diabetes have strong relationship; both are cause and effect of each other. Oxidative stress due to bronchial asthma may cause insulin resistance whereas lack of proper insulin can cause defective smooth muscle relaxant. There is no single medicine available that can manage both diseases, rather the mainstay treatment of bronchial asthma causes hyperglycemia. Keeping this problem in focus, in this study the hypoglycemic effect of an indigenous antiasthmatic Ayurvedic drug Shirishadi was evaluated. Pancreatic alpha amylase and glucosidase inhibitors offer an effective strategy to lower the level of post prandial hyperglycemia via control of starch breakdown. For evaluation of hypoglycemic activity of drug, in-vitro alpha amylase and alpha glucosidase enzyme inhibition was calculated. Ethanolic extract of compound showed 76.40% + 0.88% reduction in alpha amylase activity and 63.85% + 0.36% in alpha glucosidase activity with IC50 0.68 mg/ml and 2.89 mg/ml, respectively. This study suggests that the ethanolic extract of Shirishadi polyherbal compound effectively acts as alpha amylase and glucosidase inhibitor leading to a reduction in starch hydrolysis and hence acts as antiasthmatic as well as hypoglycemic drug.
Harmonic dynamical behaviour of thallous halides (TlCl and TlBr) have been studied using the new van der Waals three-body force shell model (VTSM), which incorporates the effects of the van der Waals interaction along with long-range Coulomb interactions, three-body interactions and short-range second neighbour interactions in the framework of rigid shell model (RSM). Phonon dispersion curves (PDC), variations of Debye temperature with absolute temperature and phonon density of state (PDS) curves have been reported for thallous halides using VTSM. Comparison of experimental values with those of VTSM and TSM are also reported in the paper and a good agreement between experimental and VTSM values has been found, from which it may be inferred that the incorporation of van der Waals interactions is essential for the complete harmonic dynamical behaviour of thallous halides.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.