An electrochemical detection of inositol content using platinum (Pt)-based noble metal electrode is investigated. In this work, the electrochemical behavior of the platinum electrode has been studied and analyzed using a three-electrode system against a silver–silver chloride (Ag/AgCl) reference electrode and a steel counter electrode. Differential pulse voltammetry technique has been employed for this experimental study. A satisfactory linear range of operation was obtained from 50 to 400[Formula: see text][Formula: see text]M with [Formula: see text]M. Electrochemical responses for several inositol concentrations 50, 80, 100, 200, 300 and 400[Formula: see text][Formula: see text]M have also been analyzed using principal component analysis (PCA) with effective data clustering. A good class separability index (SI) was found to be 142.91. In addition, a prediction estimation of inositol contents using partial least square regression (PLSR) and principal component regression (PCR) algorithms were also evaluated and prediction accuracies of 93.69% and 93.71% were obtained, respectively. Moreover, the application of the Pt electrode over real orange juice sample extracts revealed satisfactory recovery rate of 96.18%. Thus, this technique of electrochemical system may be subjected for inositol detection in our daily-life food (especially juice, beverages) consumption.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.