This work addresses information needs that have a temporal dimension conveyed by a temporal expression in the user's query. Temporal expressions such as "in the 1990s" are frequent, easily extractable, but not leveraged by existing retrieval models. One challenge when dealing with them is their inherent uncertainty. It is often unclear which exact time interval a temporal expression refers to. We integrate temporal expressions into a language modeling approach, thus making them first-class citizens of the retrieval model and considering their inherent uncertainty. Experiments on the New York Times Annotated Corpus using Amazon Mechanical Turk to collect queries and obtain relevance assessments demonstrate that our approach yields substantial improvements in retrieval effectiveness.
Computing shortest paths between two given nodes is a fundamental operation over graphs, but known to be nontrivial over large disk-resident instances of graph data. While a number of techniques exist for answering reachability queries and approximating node distances efficiently, determining actual shortest paths (i. e. the sequence of nodes involved) is often neglected. However, in applications arising in massive online social networks, biological networks, and knowledge graphs it is often essential to find out many, if not all, shortest paths between two given nodes. In this paper, we address this problem and present a scalable sketch-based index structure that not only supports estimation of node distances, but also computes corresponding shortest paths themselves. Generating the actual path information allows for further improvements to the estimation accuracy of distances (and paths), leading to near-exact shortest-path approximations in real world graphs. We evaluate our techniques -implemented within a fully functional RDF graph database system -over large realworld social and biological networks of sizes ranging from tens of thousand to millions of nodes and edges. Experiments on several datasets show that we can achieve query response times providing several orders of magnitude speedup over traditional path computations while keeping the estimation errors between 0% and 1% on average.
Prediction of links -both new as well as recurring -in a social network representing interactions between individuals is an important problem. In the recent years, there is significant interest in methods that use only the graph structure to make predictions. However, most of them consider a single snapshot of the network as the input, neglecting an important aspect of these social networks viz., their evolution over time.In this work, we investigate the value of incorporating the history information available on the interactions (or links) of the current social network state. Our results unequivocally show that timestamps of past interactions significantly improve the prediction accuracy of new and recurrent links over rather sophisticated methods proposed recently. Furthermore, we introduce a novel testing method which reflects the application of link prediction better than previous approaches.
Abstract-In this paper, we propose a scalable and highly efficient index structure for the reachability problem over graphs. We build on the well-known node interval labeling scheme where the set of vertices reachable from a particular node is compactly encoded as a collection of node identifier ranges. We impose an explicit bound on the size of the index and flexibly assign approximate reachability ranges to nodes of the graph such that the number of index probes to answer a query is minimized. The resulting tunable index structure generates a better range labeling if the space budget is increased, thus providing a direct control over the trade off between index size and the query processing performance. By using a fast recursive querying method in conjunction with our index structure, we show that, in practice, reachability queries can be answered in the order of microseconds on an off-the-shelf computer -even for the case of massive-scale real world graphs. Our claims are supported by an extensive set of experimental results using a multitude of benchmark and real-world web-scale graph datasets.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.