The second most frequent malignancy in women worldwide is cervical cancer. In the transformation(transitional) zone, which is a region of the cervix, columnar cells are continuously converting into squamous cells. The most typical location on the cervix for the development of aberrant cells is the transformation zone, a region of transforming cells. This article suggests a 2-phase method that includes segmenting and classifying the transformation zone to identify the type of cervical cancer. In the initial stage, the transformation zone is segmented from the colposcopy images. The segmented images are then subjected to the augmentation process and identified with the improved inception-resnet-v2. Here, multi-scale feature fusion framework that utilizes 3 × 3 convolution kernels from Reduction-A and Reduction-B of inception-resnet-v2 is introduced. The feature extracted from Reduction-A and Reduction -B is concatenated and fed to SVM for classification. This way, the model combines the benefits of residual networks and Inception convolution, increasing network width and resolving the deep network’s training issue. The network can extract several scales of contextual information due to the multi-scale feature fusion, which increases accuracy. The experimental results reveal 81.24% accuracy, 81.24% sensitivity, 90.62% specificity, 87.52% precision, 9.38% FPR, and 81.68% F1 score, 75.27% MCC, and 57.79% Kappa coefficient.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.