In recent years a growing understanding has emerged regarding the need to expand the modeling paradigm to include conceptual model uncertainty for groundwater models. Conceptual model uncertainty is typically addressed by formulating alternative model conceptualizations and assessing their relative likelihoods using statistical model averaging approaches. Several model averaging techniques and likelihood measures have been proposed in the recent literature for this purpose with two broad categories--Monte Carlo-based techniques such as Generalized Likelihood Uncertainty Estimation or GLUE (Beven and Binley 1992) and criterion-based techniques that use metrics such as the Bayesian and Kashyap Information Criteria (e.g., the Maximum Likelihood Bayesian Model Averaging or MLBMA approach proposed by Neuman 2003) and Akaike Information Criterion-based model averaging (AICMA) (Poeter and Anderson 2005). These different techniques can often lead to significantly different relative model weights and ranks because of differences in the underlying statistical assumptions about the nature of model uncertainty. This paper provides a comparative assessment of the four model averaging techniques (GLUE, MLBMA with KIC, MLBMA with BIC, and AIC-based model averaging) mentioned above for the purpose of quantifying the impacts of model uncertainty on groundwater model predictions. Pros and cons of each model averaging technique are examined from a practitioner's perspective using two groundwater modeling case studies. Recommendations are provided regarding the use of these techniques in groundwater modeling practice.
This paper deals with the estimation of soil hydraulic and transport parameters from transient unsaturated flow and tracer experiments using a combined simulations‐optimization approach. Hydraulic properties are defined by a modified form of van Genuchten's (1980) parametric model for two‐phase permeability‐saturation‐pressure relations, and transport properties are defined by an empirical parametric dispersion model. A nonlinear weighted least squares algorithm is used to estimate unknown model parameters by minimizing deviations between concentrations, water contents, and pressure heads obtained from hypothetical infiltration/redistribution/evaporation experiments, and those predicted by solving a numerical model of coupled unsaturated flow and transport. Simultaneous estimation of hydraulic and transport properties is found to yield smaller estimation errors for model parameters than sequential inversion of hydraulic properties from water content and pressure head data followed by inversion for transport properties from concentration data. Effects of random noise in data measurements, soil layering, and choice of improper parametric model on the parameter estimation process are discussed.
Global sensitivity analysis techniques are better suited for analyzing input-output relationships over the full range of parameter variations and model outcomes, as opposed to local sensitivity analysis carried out around a reference point. This article describes three such techniques: (1) stepwise rank regression analysis for building input-output models to identify key contributors to output variance, (2) mutual information (entropy) analysis for determining the strength of nonmonotonic patterns of input-output association, and (3) classification tree analysis for determining what variables or combinations are responsible for driving model output into extreme categories. These techniques are best applied in conjunction with Monte Carlo simulation-based probabilistic analyses. Two examples are presented to demonstrate the applicability of these methods. The usefulness of global sensitivity techniques is examined vis-a-vis local sensitivity analysis methods, and recommendations are provided for their applications in ground water modeling practice.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.