This paper presents a literature review of the dynamics of offshore floating wind turbine platforms. When moving further offshore, there is an increase in the capacity of wind power. Generating power from renewable resources is enhanced through the extraction of wind energy from an offshore deep-water wind resource. Mounting the turbine on a platform that is not stable brings another difficulty to wind turbine modeling. There is a need to introduce platforms that are more effective to capture this energy, because of the complex dynamics and control of these platforms. This paper highlights the historical developments and progresses in the design of different types of offshore floating wind turbine platforms needed for harvesting the energy from offshore winds. The relative advantages and disadvantages of the platform types with the design challenges are discussed. The major types of floating platforms included in this study are tension leg platform (TLP) type, spar type, and semisubmersible type. This study reviews the previous work on the dynamics of the floating platforms for a single turbine and multiple turbines under various operating environmental conditions. The numerical methods to analyze the aerodynamics of the wind turbine and hydrodynamics of floating platforms are discussed in this paper. This paper also investigates the performance of analytical wake loss models of Jensen, Larsen, and Frandsen that can provide guidelines for using these wake models in future applications. There are still a lot of challenges that need to be addressed to study the accurate behavior of floating platforms operating under combined wind–wave environmental conditions. With the current technological advancements, the offshore floating multi-turbine platform can be a potential solution to harness the abundant offshore wind resource. Based on this literature review, recommendations for future work are suggested.
In this paper, robust adaptive control is designed for pitch and torque control of the wind turbines operating under turbulent wind conditions. The dynamics of the wind turbine are formulated by considering the five degrees of freedom system (rotor angle, gearbox angle, generator angle, flap-wise deflection of the rotor blade, and axial displacement of the nacelle). The controller is designed to maintain the rotor speed, maximize the aerodynamic efficiency of the wind turbine, and reduce the loads due to high wind speeds. Gaussian probability distribution function is used for approximating the wind speed, which is given as the disturbance input to the plant. The adaptive control algorithm is implemented to 2 MW and 5 MW wind turbines to test the robustness of the controller for varying parameters. The simulation is carried out using MATLAB/Simulink for three cases, namely pitch control, torque control, and the combined case. A case study is done to validate the proposed adaptive control using real wind speed data. In all the cases, the results indicate that the rotor speed follows the reference speed and show that the designed controller gives a satisfactory performance under varying operating conditions and parameter variations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.