Predicting clinically significant drug interactions during drug development is a challenge for the pharmaceutical industry and regulatory agencies. Since the publication of the US Food and Drug Administration's (FDA's) first in vitro and in vivo drug interaction guidance documents in 1997 and 1999, researchers and clinicians have gained a better understanding of drug interactions. This knowledge has enabled the FDA and the industry to progress and begin to overcome these challenges. The FDA has continued its efforts to evaluate methodologies to study drug interactions and communicate recommendations regarding the conduct of drug interaction studies, particularly for CYP-based and transporter-based drug interactions, to the pharmaceutical industry. A drug interaction Web site was established to document the FDA's current understanding of drug interactions (http://www.fda.gov/cder/drug/drugInteractions/default.htm). This report provides an overview of the evolution of the drug interaction guidances, includes a synopsis of the steps taken by the FDA to revise the original drug interaction guidance documents, and summarizes and highlights updated sections in the current guidance document, Drug Interaction Studies-Study Design, Data Analysis, and Implications for Dosing and Labeling.
Drug interactions are a leading cause of morbidity and mortality. Methadone and buprenorphine are frequently prescribed for the treatment of opioid addiction. Patients needing treatment with these medications often have co-occurring medical and mental illnesses that require medication treatment. The abuse of illicit substances is also common in opioid-addicted individuals. These clinical realities place patients being treated with methadone and buprenorphine at risk for potentially toxic drug interactions. A substantial literature has accumulated on drug interactions between either methadone or buprenorphine with other medications when ingested concomitantly by humans. This review summarizes current literature in this area.
The antiretroviral agent efavirenz enhances the systemic clearance of coadministered drugs that are cytochrome P450 (CYP) 3A4 substrates. The mechanism of the apparent increase in CYP3A4 activity by efavirenz and the magnitude of change relative to other known inducers are not known. The authors tested the hypothesis that increased enzymatic activity by efavirenz entails CYP3A4 induction and activation of the human pregnane X receptor (hPXR), a key transcriptional regulator of CYP3A4. Employing primary cultures of human hepatocytes, they compared the CYP3A4 inductive effects of efavirenz (1-10 microM) to rifampin (10 microM) and phenobarbital (2 mM). A cell-based reporter assay was employed to assess hPXR activation. The authors observed that efavirenz caused a concentration-dependent CYP3A4 induction and hPXR activation. Based on the CYP3A4 activity assay, the average magnitude of induction by efavirenz (5-10 microM) was approximately 3- to 4-fold. In comparison, phenobarbital (2 mM) and rifampin (10 microM) caused a 5- and 6-fold induction, respectively.
This article is available online at http://dmd.aspetjournals.org ABSTRACT:Tamoxifen is a widely utilized antiestrogen in the treatment and chemoprevention of breast cancer. Clinical studies document that tamoxifen administration markedly enhances the systemic elimination of other drugs. Additionally, tamoxifen enhances its own clearance following repeated dosing. The mechanisms that underlie these clinically important events remain unresolved. Here, we report that tamoxifen and its metabolite 4-hydroxytamoxifen markedly induce cytochrome P450 3A4, a drug-metabolizing enzyme of central importance, in primary cultures of human hepatocytes. Tamoxifen and 4-hydroxytamoxifen (1-10 M) significantly increased the CYP3A4 expression and activity (measured as the rate of testosterone 6-hydroxylation). Maximal induction was achieved at the 5 M level. At this level, tamoxifen and 4-hydroxytamoxifen caused a 1.5-to 3.3-fold (mean, 2.1-fold) and 3.4-to 17-fold (mean, 7.5-fold) increase in the CYP3A4 activity, respectively. In comparison, rifampicin treatment resulted in a 6-to 16-fold (mean, 10.5-fold) increase. We also observed corresponding increase in the CYP3A4 immunoreactive protein and mRNA levels. Furthermore, tamoxifen and 4-hydroxytamoxifen efficaciously activated the human pregnane X receptor (hPXR; also known as the steroid xenobiotic receptor), a key regulator of CYP3A4 expression. The efficacy of tamoxifen and 4-hydroxytamoxifen relative to rifampicin for hPXR activation was ϳ30 and 60%, respectively. Our results indicate that the mechanism of tamoxifen-mediated alteration in drug clearance pathways in humans may involve CYP3A4 induction by the parent drug and/or its metabolite. Furthermore, the CYP3A4 induction may be a result of hPXR activation. These findings have important implications for optimizing the use of tamoxifen and in the development of newer antiestrogens.Tamoxifen, a nonsteroidal triphenylethylene, is currently the endocrine therapeutic agent of choice for all stages of breast cancer. It was also recently approved for use as a chemopreventive agent in women with high risk of contracting this disease in the future. Despite its well documented beneficial effects, tamoxifen use is associated with several major problems including serious drug-drug interactions. Several clinical trials indicate that tamoxifen has the propensity to alter the drug elimination pathway(s), resulting in markedly reduced plasma levels of coadministered compounds. In this regard, recently completed clinical trials indicate that tamoxifen reduced the plasma levels of aromatase inhibitors letrozole and anastrozole by 37 and 27%, respectively ATAC Trialists' Group, 2001). Such drug-drug interactions are of special concern with tamoxifen since numerous women are required to take tamoxifen daily for an extended time period and as such are likely to be simultaneously exposed to many drugs and nutraceuticals. Another consequence of tamoxifen-induced changes in drug disposition is that tamoxifen pharmacokinetics exhibit time-depende...
AIMConducting PK studies in pregnant women is challenging. Therefore, we asked if a physiologically-based pharmacokinetic (PBPK) model could be used to predict the disposition in pregnant women of drugs cleared by multiple CYP enzymes. METHODSWe expanded and verified our previously published pregnancy PBPK model by incorporating hepatic CYP2B6 induction (based on in vitro data), CYP2C9 induction (based on phenytoin PK) and CYP2C19 suppression (based on proguanil PK), into the model. This model accounted for gestational age-dependent changes in maternal physiology and hepatic CYP3A, CYP1A2 and CYP2D6 activity. For verification, the pregnancy-related changes in the disposition of methadone (cleared by CYP2B6, 3A and 2C19) and glyburide (cleared by CYP3A, 2C9 and 2C19) were predicted. RESULTSPredicted mean post-partum to second trimester (PP : T2) ratios of methadone AUC, Cmax and Cmin were 1.9, 1.7 and 2.0, vs. observed values 2.0, 2.0 and 2.6, respectively. Predicted mean post-partum to third trimester (PP : T3) ratios of methadone AUC, Cmax and Cmin were 2.1, 2.0 and 2.4, vs. observed values 1.7, 1.7 and 1.8, respectively. Predicted PP : T3 ratios of glyburide AUC, Cmax and Cmin were 2.6, 2.2 and 7.0 vs. observed values 2.1, 2.2 and 3.2, respectively. CONCLUSIONSOur PBPK model integrating prior physiological knowledge, in vitro and in vivo data, allowed successful prediction of methadone and glyburide disposition during pregnancy. We propose this expanded PBPK model can be used to evaluate different dosing scenarios, during pregnancy, of drugs cleared by single or multiple CYP enzymes. WHAT IS ALREADY KNOWN ABOUT THIS SUBJECT• During pregnancy, changes in physiology and absorption, distribution, metabolism and excretion (ADME) processes can significantly affect the disposition of drugs. Such changes may require adjustments in the dosing regimen of the drug.• Since conducting pharmacokinetic (PK) studies in pregnant women is challenging, alternative approaches that can predict adjustment of drug dosing regimens (if any) are highly desirable. WHAT THIS STUDY ADDS• We expanded and verified a physiologically based PK model, which incorporated gestational age-dependent changes in maternal physiology and major hepatic CYP enzyme activity, to predict disposition during pregnancy of drugs cleared by multiple CYP enzymes (e.g. glyburide and methadone).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.