Accelerated ageing experiments have been conducted to address durability issues of carbon/epoxy composites to be used for emerging facilities and infrastructure, such as, bridges and buildings, in different climatic zones. The degradation of carbon/epoxy composites under UV, hygrothermal exposure, and applied tensile stress has been investigated. The tests were designed to capture the synergistic effects of field exposure and extreme temperatures, viz., hot/dry, hot/wet, cold/dry, and cold/wet conditions. Short beam shear tests (SBST) were performed for the determination of interlaminar shear strength (ILSS) of conditioned composite specimens. The hot/dry samples showed increased strength, while the hot/wet ones showed a decrease in strength. It is conjectured that conditioning at 90 °C possibly contributed to an increase in the ILSS from post curing. For the hot/wet samples (90 °C, immersed in water) the results indicate that strength degradation due to moisture-induced hydrolysis overshadowed the post-curing effect. The samples subjected to shear stress under hot conditions (90 °C) showed a higher ILSS, possibly due to improved crosslink density arising from post-cure. There is insignificant variation in the ILSS of UV treated and the UV untreated control samples. All the SBST test data reported in this work are from tests performed at room temperature and ambient humidity after environmental ageing. A two-dimensional cohesive layer constitutive model with a prescribed traction-separation law constructed from the basic principles of continuum mechanics, taking into account hygrothermal mechanisms that are likely to occur within a cohesive bi-material interface, such as between adjacent plies in a laminate, was applied to simulate interlaminar failure in the SBST specimens, using Finite Element Analysis (FEA). A phenomenological predictive model was developed using the finite element results.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.