SUMMARYThis paper focuses on the analysis of a scheme for sensor failure, detection, identification and accommodation (SFDIA) using experimental flight data of a research aircraft model. Recent technical literature has shown the advantages of time-varying estimators and/or approximators. Conventional approaches are based on different versions of observers and Kalman filters while more recent methods are based on different approximators based on neural networks (NNs). The approach proposed in the paper is based on the use of on-line learning nonlinear neural approximators.The characteristics of three different neural architectures were compared through different sensor failures. The first architecture is based on a multi layer perceptron (MLP) NN trained with the extended back propagation algorithm (EBPA). The second and third architectures are based on a radial basis function (RBF) NN trained with the minimal resource allocating network (MRAN) and extended-MRAN (EMRAN). The MRAN and EMRAN algorithms have recently been developed for RBF networks and have shown remarkable learning capabilities at a fraction of the memory requirements and computational effort typically associated with conventional RBF NNs.The experimental data for this study are flight data acquired from the flight-testing of a 1 24 th semi-scale B777 research model designed, built, and flown at West Virginia University (WVU).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.