We introduce the problem of mining association rules in large relational tables containing both quantitative and categorical attributes. An example of such an association might be "10% of married people between age 50 and 60 have at least 2 cars". We deal with quantitative attributes by fine-partitioning the values of the attribute and then combining adjacent partitions as necessary. We introduce measures of partial completeness which quantify the information lost due to partitioning. A direct application of this technique can generate too many similar rules. We tackle this problem by using a "greater-than-expected-value" interest measure to identify the interesting rules in the output. We give an algorithm for mining such quantitative association rules. Finally, we describe the results of using this approach on a real-life dataset.
A range query applies an aggregation operation over all selected cells of an OLAP data cube where the selection is specified by providing ranges of values for numeric dimensions. We present fast algorithms for range queries for two types of aggregation operations: SUM and MAX. These two operations cover techniques required for most popular aggregation operations, such as those supported by SQL. For range-sum queries, the essential idea is to precompute some auxiliary information (prefix sums) that is used to answer ad hoc queries at run-time. By maintaining auxiliary information which is of the same size as the data cube, all range queries for a given cube can be answered in constant time, irrespective of the size of the sub-cube circumscribed by a query. Alternatively, one can keep auxiliary information which is 1/ b d of the size of the d -dimensional data cube. Response to a range query may now require access to some cells of the data cube in addition to the access to the auxiliary information, but the overall time complexity is typically reduced significantly. We also discuss how the precomputed information is incrementally updated by batching updates to the data cube. Finally, we present algorithms for choosing the subset of the data cube dimensions for which the auxiliary information is computed and the blocking factor to use for each such subset. Our approach to answering range-max queries is based on precomputed max over balanced hierarchical tree structures. We use a branch-and-bound-like procedure to speed up the finding of max in a region. We also show that with a branch-and-bound procedure, the average-case complexity is much smaller than the worst-case complexity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.