The major breast cancer suppressor proteins BRCA1 and BRCA2 play essential roles in homologous recombination (HR)-mediated DNA repair, which is thought to be critical for tumor suppression. The two BRCA proteins are linked by a third tumor suppressor, PALB2, in the HR pathway. While truncating mutations in these genes are generally pathogenic, interpretations of missense variants remains a challenge. To date, patient-derived missense variants that disrupt PALB2 binding have been identified in BRCA1 and BRCA2; however, there has not been sufficient evidence to prove their pathogenicity in humans, and no variants in PALB2 that disrupt either its BRCA1 or BRCA2 binding have been reported. Here, we report on the identification of a novel PALB2 variant, c.104T>C [p.L35P], that segregated in a family with a strong history of breast cancer. Functional analyses showed that L35P abrogates the PALB2-BRCA1 interaction and completely disables its abilities to promote HR and confer resistance to platinum salts and PARP inhibitors. Whole-exome sequencing of a breast cancer from a c.104T>C carrier revealed a second, somatic, truncating mutation affecting PALB2, and the tumor displays hallmark genomic features of tumors with BRCA mutations and HR defects, cementing the pathogenicity of L35P. Parallel analyses of other germline variants in the PALB2 N-terminal BRCA1-binding domain identified multiple variants that affect HR function to varying degrees, suggesting their possible contribution to cancer development. Our findings establish L35P as the first pathogenic missense mutation in PALB2 and directly demonstrate the requirement of the PALB2-BRCA1 interaction for breast cancer suppression.
BRCA1 plays a critical role in homology-directed repair (HDR) of DNA double strand breaks, and the repair defect of BRCA1-mutant cancer cells is being targeted with platinum drugs and poly (ADP-ribose) polymerase (PARP) inhibitors. We have employed relatively simple and sensitive assays to determine the function of BRCA1 variants or mutants in two HDR mechanisms, homologous recombination (HR) and single strand annealing (SSA), and in conferring resistance to cisplatin and olaparib in human cancer cells. Our results define the functionality of the top 22 patient-derived BRCA1 missense variants and the contribution of different domains of BRCA1 and its E3 ubiquitin ligase activity to HDR and drug resistance. Importantly, our results also demonstrate that the BRCA1-PALB2 interaction dictates the choice between HR and SSA. These studies establish functional and mutational landscapes of BRCA1 for HDR and therapy resistance, while revealing novel insights into BRCA1 regulatory mechanisms and HDR pathway choice.DOI: http://dx.doi.org/10.7554/eLife.21350.001
Background: BRCA1 and PALB2 interact with each other to promote homologous recombination and DNA double strand break repair. Results: Mice with abrogated PALB2-BRCA1 interaction show male fertility defect. Conclusion: PALB2 and BRCA1 function together to ensure normal male meiosis. Significance: This work demonstrates the importance of the PALB2-BRCA1 interaction in vivo and reveals a novel role of PALB2 in sex chromosome synapsis.
BackgroundHeterogeneous nuclear ribonucleoprotein C1/C2 (hnRNP C) is a core component of 40S ribonucleoprotein particles that bind pre-mRNAs and influence their processing, stability and export. Breast cancer tumor suppressors BRCA1, BRCA2 and PALB2 form a complex and play key roles in homologous recombination (HR), DNA double strand break (DSB) repair and cell cycle regulation following DNA damage.MethodsPALB2 nucleoprotein complexes were isolated using tandem affinity purification from nuclease-solubilized nuclear fraction. Immunofluorescence was used for localization studies of proteins. siRNA-mediated gene silencing and flow cytometry were used for studying DNA repair efficiency and cell cycle distribution/checkpoints. The effect of hnRNP C on mRNA abundance was assayed using quantitative reverse transcriptase PCR.Results and SignificanceWe identified hnRNP C as a component of a nucleoprotein complex containing breast cancer suppressor proteins PALB2, BRCA2 and BRCA1. Notably, other components of the 40S ribonucleoprotein particle were not present in the complex. hnRNP C was found to undergo significant changes of sub-nuclear localization after ionizing radiation (IR) and to partially localize to DNA damage sites. Depletion of hnRNP C substantially altered the normal balance of repair mechanisms following DSB induction, reducing HR usage in particular, and impaired S phase progression after IR. Moreover, loss of hnRNP C strongly reduced the abundance of key HR proteins BRCA1, BRCA2, RAD51 and BRIP1, which can be attributed, at least in part, to the downregulation of their mRNAs due to aberrant splicing. Our results establish hnRNP C as a key regulator of BRCA gene expression and HR-based DNA repair. They also suggest the existence of an RNA regulatory program at sites of DNA damage, which involves a unique function of hnRNP C that is independent of the 40S ribonucleoprotein particles and most other hnRNP proteins.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.