Secure and real-time data about goods in transit in supply chains needs bandwidth having capacity that is not fulfilled with the current infrastructure. Hence, 5G-enabled Internet of Things (IoT) in mobile edge computing is intended to substantially increase this capacity. To deal with this issue, we design a new efficient "lightweight blockchain-enabled RFIDbased authentication protocol for supply chains in 5G mobile edge computing environment", called LBRAPS. LBRAPS is based on "bitwise exclusive-or (XOR)", "one-way cryptographic hash" and "bitwise rotation operations" only. LBRAPS is shown to be secure against various attacks. Moreover, the simulation-based formal security verification using the broadly-accepted "Automated Validation of Internet Security Protocols and Applications (AVISPA)" tool assures that LBRAPS is secure. Finally, it is shown that LBRAPS has better trade-off among its security and functionality features, communication and computation costs as compared to those for existing protocols.
Wireless medical sensor networks (WMSN) comprise of distributed sensors, which can sense human physiological signs and monitor the health condition of the patient. It is observed that providing privacy to the patient's data is an important issue and can be challenging. The information passing is done via the public channel in WMSN. Thus, the patient, sensitive information can be obtained by eavesdropping or by unauthorized use of handheld devices which the health professionals use in monitoring the patient. Therefore, there is an essential need of restricting the unauthorized access to the patient's medical information. Hence, the efficient authentication scheme for the healthcare applications is needed to preserve the privacy of the patients' vital signs. To ensure secure and authorized communication in WMSN, we design a symmetric key based authentication protocol for WMSN environment. The proposed protocol uses only computationally efficient operations to achieve lightweight attribute. We analyze the security of the proposed protocol. We use a formal security proof algorithm to show the scheme security against known attacks. We also use the Automated Validation of Internet Security Protocols and Applications (AVISPA) simulator to show protocol secure against man-in-the-middle attack and replay attack. Additionally, we adopt an informal analysis to discuss the key attributes of the proposed scheme. From the formal proof of security, we can see that an attacker has a negligible probability of breaking the protocol security. AVISPA simulator also demonstrates the proposed scheme security against active attacks, namely, man-in-the-middle attack and replay attack. Additionally, through the comparison of computational efficiency and security attributes with several recent results, proposed scheme seems to be battered.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.