Switched reluctance motor (SRM) drives can be a good competitor to conventional induction and permanent magnet motors in variable speed applications because of advantages, such as simple construction, no rotor windings, high torque to inertia ratio, adaptability to hostile conditions, etc. Due to its high nonlinearity, the torque ripple is high in switched reluctance motor. The sophisticated direct instantaneous torque control (DITC) can maintain the torque developed by the motor within hysteresis band by suitably selecting the switching states of the converter. Hence, DITC controller minimizes the torque ripples and also provides fast response to the torque changes. The performance of DITC controlled SRM drive is analyzed through simulations during acceleration and also in steady state for two types of load torques namely fan type and constant torque. The variation of the switching frequency of the converter is analyzed by changing the torque hysteresis band. It has been observed that as the hysteresis band decreases, the switching frequency increases. So, the hysteresis band cannot be increased beyond a certain limit so as to ensure that the switching frequency of the device cannot increase beyond its operating limit.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.