Abstract-Understanding and predicting the human visual attentional mechanism is an active area of research in the fields of neuroscience and computer vision. In this work, we propose DeepFix, a first-of-its-kind fully convolutional neural network for accurate saliency prediction. Unlike classical works which characterize the saliency map using various hand-crafted features, our model automatically learns features in a hierarchical fashion and predicts saliency map in an end-to-end manner. DeepFix is designed to capture semantics at multiple scales while taking global context into account using network layers with very large receptive fields. Generally, fully convolutional nets are spatially invariant which prevents them from modeling location dependent patterns (e.g. centre-bias). Our network overcomes this limitation by incorporating a novel Location Biased Convolutional layer. We evaluate our model on two challenging eye fixation datasets -MIT300, CAT2000 and show that it outperforms other recent approaches by a significant margin.
Traditional architectures for solving computer vision problems and the degree of success they enjoyed have been heavily reliant on hand-crafted features. However, of late, deep learning techniques have offered a compelling alternative -that of automatically learning problem-specific features. With this new paradigm, every problem in computer vision is now being re-examined from a deep learning perspective. Therefore, it has become important to understand what kind of deep networks are suitable for a given problem. Although general surveys of this fast-moving paradigm (i.e., deep-networks) exist, a survey specific to computer vision is missing. We specifically consider one form of deep networks widely used in computer vision -convolutional neural networks (CNNs). We start with "AlexNet" as our base CNN and then examine the broad variations proposed over time to suit different applications. We hope that our recipe-style survey will serve as a guide, particularly for novice practitioners intending to use deep-learning techniques for computer vision.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.