Abstract-Routing protocols using the Distributed Bellman-Ford (DBF) algorithm converge very slowly to the correct routes when link costs increase, and in the case when a set of link failures results in a network partition, DBF simply fails to converge, a problem which is commonly referred to as the count-to-infinity problem. In this paper, we present the first distance vector routing algorithm MDVA that uses a set of loop-free invariants to prevent the count-to-infinity problem. MDVA, in addition, computes multipaths that are loop-free at every instant. In our earlier work we shows how such loop-free multipaths can be used in traffic load-balancing and minimizing delays, which otherwise are impossible to perform in current single-path routing algorithms [15].
The conventional approach to routing in computer networks consists of using a heuristic to compute a single shortest path from a source to a destination. Single-path routing is very responsive to topological and link-cost changes; however, except under light traffic loads, the delays obtained with this type of routing are far from optimal. Furthermore, if link costs are associated with delays, single-path routing exhibits oscillatory behavior and becomes unstable as traffic loads increase. On the other hand, minimum-delay routing approaches can minimize delays only when traffic is stationary or very slowly changing.We present a "near-optimal" routing framework that offers delays comparable to those of optimal routing and that is as flexible and responsive as single-path routing protocols proposed to date. First, an approximation to the Gallager's minimum-delay routing problem is derived, and then algorithms that implement the approximation scheme are presented and verified. We introduce the first routing algorithm based on link-state information that provides multiple paths of unequal cost to each destination that are loop-free at every instant. We show through simulations that the delays obtained in our framework are comparable to those obtained using the Gallager's minimum-delay routing. Also, we show that our framework renders far smaller delays and makes better use of resources than traditional single-path routing.
The conventional approach to routing in computer networks consists of using a heuristic to compute a single shortest path from a source to a destination. Single-path routing is very responsive to topological and link-cost changes; however, except under light traffic loads, the delays obtained with this type of routing are far from optimal. Furthermore, if link costs are associated with delays, single-path routing exhibits oscillatory behavior and becomes unstable as traffic loads increase. On the other hand, minimumdelay routing approaches can minimize delays only when traffic is stationary or very slowly changing.We present a "near-optimal" routing framework that offers delays comparable to those of optimal routing and that is as flexible and responsive as single-path routing protocols proposed to date. First, an approximation to the Gallager's minimum-delay routing problem is derived, and then algorithms that implement the approximation scheme are presented and verified. We introduce the first routing algorithm based on link-state information that provides multiple paths of unequal cost to each destination that are loop-free at every instant. We show through simulations that the delays obtained in our framework are comparable to those obtained using the Gallager's minimum-delay routing. Also, we show that our framework renders far smaller delays and makes better use of resources than traditional single-path routing.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.