Plastic waste pollution is a global environmental problem which could be addressed by biodegradable plastics. The latter are blended together to achieve commercially functional properties, but the environmental fate of these blends is unknown. We have tested neat polymers, polylactic acid (PLA), polyhydroxybutyrate, polyhydroxyoctanoate, poly(butylene succinate), thermoplastic starch, polycaprolactone (PCL), and blends thereof for biodegradation across seven managed and unmanaged environments. PLA is one of the world's best-selling biodegradable plastics, but it is not home compostable. We show here that PLA when blended with PCL becomes home compostable. We also demonstrate that the majority of the tested bioplastics and their blends degrade by thermophilic anaerobic digestion with high biogas output, but degradation times are 3-6 times longer than the retention times in commercial plants. While some polymers and their blends showed good biodegradation in soil and water, the majority of polymers and their blends tested in this study failed to achieve ISO and ASTM biodegradation standards, and some failed to show any biodegradation. Thus, biodegradable plastic blends need careful postconsumer management, and further design to allow more rapid biodegradation in multiple environments is needed as their release into the environment can cause plastic pollution.
There is a high demand for polymer actuators comprising reactive groups at their surface in biotechnological or bioanalytical devices especially in microfluidics. In this work, we explored whether a thermoplastic poly[ethyleneco-(ethyl acylate)-co-(maleic anhydride)] (PEEAMA) terpolymer can be converted to a multifunctional shapememory actuator by introducing covalent netpoints. In crosslinked PEEAMA (cPEEAMA) crystalline polyethylene (PE) domains with melting temperatures below 70°C should serve as actuation domains, responsible for the reversible shape change during cyclic heating and cooling, while higher melting PE crystals act as skeleton forming domains; finally maleic anhydride (MAH) groups enable surface modification of the polymeric substrate. cPEEAMAs with a fixed composition and various crosslink densities were prepared by thermally crosslinking of PEEAMA using different dicumyl peroxide (DCP) concentrations in the starting reaction mixture. A broad melting transition in the range of 50 to 90°C with a melting temperature interval of ΔT m = 40°C, related to the crystalline PE domains, was observed for all polymer networks in differential scanning calorimetric experiments. Cyclic, thermomechanical uniaxial tensile tests revealed high reversible strains up to 17 ± 2%. A reversible change in long period during repetitive heating and cooling was observed in in situ small angle X-ray scattering experiments. Finally, a successful functionalization of the MAH groups at the cPEEAMA surface by reaction with ethylene diamine was confirmed by infrared spectroscopy analysis. The presented amino functionalized cPEEAMA substrates could be a candidate material for the preparation of adaptive microfluidic devices.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.