This paper deals with a feedback gain design method for the full-order flux observer with adaptive speed loop, which enables the minimizing the unstable operation region of this observer to a line in the torque-speed plane. The stability in regenerating mode is studied using necessary condition of stability based on determinant of matrix and a linearized model. Simulations results where the proposed observer is compared with an exiting solution (where the unstable region is not totally removed) are presented to validate the proposed observer design.
Summary
The main goal behind the combined economic emission dispatch (CEED) is to reduce the costs incurred upon fuel and emission for the generating units available without any intention to violate the generator and security constraints. Hence, the CEED must be handled after considering two challenging goals such as the costs involved with emission and fuel. In this paper, chaotic self‐adaptive interior search algorithm (CSAISA) was proposed to solve the CEED problems, considering the nonlinear behavior of generators in terms of valve point effects, prohibited operating zones, and security constraints. The proposed algorithm was tested for its effectiveness using 11‐generating units (without security), IEEE‐30 bus system, and IEEE‐118 bus system with security constraints. The results of the proposed CSAISA were compared with interior search algorithm (ISA), harmony search algorithm (HSA), differential evolution (DE), particle swarm optimization (PSO), and genetic algorithm (GA). To conclude, the proposed CSAISA outperformed all other algorithms in terms of convergence speed, implementation time, and solution quality, which was tested using performance metrics.
The dynamics of robot manipulators are highly nonlinear with strong couplings existing between joints and are frequently subjected to structured and unstructured uncertainties. Fuzzy Logic Controller can very well describe the desired system behavior with simple "if-then" relations owing the designer to derive "if-then" rules manually by trial and error. On the other hand, Neural Networks perform function approximation of a system but cannot interpret the solution obtained neither check if its solution is plausible. The two approaches are complementary. Combining them, Neural Networks will allow learning capability while Fuzzy-Logic will bring knowledge representation (Neuro-Fuzzy). This paper presents the control of six degrees of freedom robot arm (PUMA Robot) using Adaptive Neuro Fuzzy Inference System (ANFIS) based PD plus I controller. Numerical simulation using the dynamic model of six DOF robot arm shows the effectiveness of the approach in trajectory tracking problems. Comparative evaluation with respect to PID, Fuzzy PD+I controls are presented to validate the controller design. The results presented emphasize that a satisfactory tracking precision could be achieved using ANFIS controller than PID and Fuzzy PD+I controllers
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.