Purpose In the research of stock market efficiency, it is argued that the stock market moves randomly and absorbs all the available information. As a result, it is quite impossible to make predictions about the possible future movement by the investors. But literatures have detected certain calendar anomalies where a day(s) in a week or month(s) in a year or a particular event in a year becomes conducive for investors to earn more than the normal. Hence, the purpose of this study is to find out the month of the year effect in the Indian stock market. Design/methodology/approach In this study, daily time series data of Sensex and Nifty from 1996 to 2021 is used. The study uses month dummies to capture the effect. Different variants of generalised autoregressive conditional heteroskedasticity (GARCH) models, both symmetric and asymmetric, are used in the study to model the conditional volatility in the presence month effect. Findings This study found the September effect in the return series of both the stock market. Apart from that, asymmetric GARCH models are found to be the best fit model to estimate conditional volatility. Originality/value This study is an endeavour to study month of the year effect in the Indian context. This research will provide valuable insight for studying the different calendar anomalies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.