Abnormal uterine activity in pregnancy causes a range of important clinical disorders, including preterm birth, dysfunctional labour and post-partum haemorrhage. Uterine contractile patterns are controlled by the generation of complex electrical signals at the myometrial smooth muscle plasma membrane. To identify novel targets to treat conditions associated with uterine dysfunction, we undertook a genome-wide screen of potassium channels that are enriched in myometrial smooth muscle. Computational modelling identified Kir7.1 as potentially important in regulating uterine excitability during pregnancy. We demonstrate Kir7.1 current hyper-polarizes uterine myocytes and promotes quiescence during gestation. Labour is associated with a decline, but not loss, of Kir7.1 expression. Knockdown of Kir7.1 by lentiviral expression of miRNA was sufficient to increase uterine contractile force and duration significantly. Conversely, overexpression of Kir7.1 inhibited uterine contractility. Finally, we demonstrate that the Kir7.1 inhibitor VU590 as well as novel derivative compounds induces profound, long-lasting contractions in mouse and human myometrium; the activity of these inhibitors exceeds that of other uterotonic drugs. We conclude Kir7.1 regulates the transition from quiescence to contractions in the pregnant uterus and may be a target for therapies to control uterine contractility.
Alternative splicing generates a smaller assortment of CaV2.1 transcripts in cerebellar Purkinje cells than in the cerebellum. Physiol Genomics 24: 86 -96, 2006. First published November 8, 2005 doi:10.1152/physiolgenomics.00149.2005.-P/Qtype calcium channels control many calcium-driven functions in the brain. The CACNA1A gene encoding the pore-forming CaV2.1 (␣1A) subunit of P/Q-type channels undergoes alternative splicing at multiple loci. This results in channel variants with different phenotypes. However, the combinatorial patterns of alternative splice events at two or more loci, and hence the diversity of CaV2.1 transcripts, are incompletely defined for specific brain regions and types of brain neurons. Using RT-PCR and splice variant-specific primers, we have identified multiple CaV2.1 transcript variants defined by different pairs of splice events in the cerebellum of adult rat. We have uncovered new splice variations between exons 28 and 34 (some of which predict a premature stop codon) and a new variation in exon 47 (which predicts a novel extended COOH-terminus). Single cell RT-PCR reveals that each individual cerebellar Purkinje neuron also expresses multiple alternative CaV2.1 transcripts, but the assortment is smaller than in the cerebellum. Two of these variants encode different extended COOH-termini which are not the same as those previously reported in Purkinje cells of the mouse. Our patch-clamp recordings show that calcium channel currents in the soma and dendrites of Purkinje cells are largely inhibited by a concentration of -agatoxin IVA selective for P-type over Q-type channels, suggesting that the different transcripts may form phenotypic variants of P-type calcium channels in Purkinje cells. These results expand the known diversity of Ca V2.1 transcripts in cerebellar Purkinje cells, and propose the selective expression of distinct assortments of Ca V2.1 transcripts in different brain neurons and species. splice variants; P type; calcium channels; Purkinje neurons 0 VOLTAGE-GATED calcium (Ca 2ϩ ) channels regulate numerous cellular functions, from neuronal electrical activity to intracellular signaling pathways. Diversity of Ca 2ϩ channels in the brain is apparent from the many roles that Ca 2ϩ channels play in different cell types and subcellular compartments (3). The diversity reflects, in part, the existence of nine classes of the pore-forming Ca V (␣1) subunit in the brain and alternative pre-mRNA splicing of the gene encoding each class of Ca V subunit (12, 17). P/Q-type Ca 2ϩ channels control many functions throughout the brain and contain a Ca V 2.1 subunit (also known as ␣ 1A ). However, information about splicing of the CACNA1A gene encoding Ca V 2.1 in different brain regions and neurons is incomplete (2,5,16,30,33,35,37). Augmentation of what is currently known about Ca V 2.1 splicing in the cerebellum and cerebellar Purkinje cells is of particular interest, because P-type currents in Purkinje cells are the prototypical P-type currents against which putative P-type and Q-...
Astrocytes express mainly metabotropic glutamate receptor 3 and metabotropic glutamate receptor 5 receptor subtypes, which show opposing effects on cellular proliferation upon activation. In this study, we investigated the mechanisms by which activation of these receptors modulates astrocyte proliferation. Activation of metabotropic glutamate receptor 5 with (S)-3,5-dihydroxyphenylglycine increased phospholipase D activity in astrocytes as well as astrocyte proliferation. The 3,5-dihydroxyphenylglycine-induced proliferation was inhibited in the presence of the metabotropic glutamate receptor 5 antagonist (2-methyl-6-(phenylethynyl)pyridine), the protein kinase C inhibitor GF109203X, brefeldin A and 1-butanol. Activation of metabotropic glutamate receptor 3 with (2'S,2'R,3'R)-2-(2',3'-dicarboxycyclopropyl)glycine-IV (DCG-IV) inhibited astrocyte proliferation without affecting metabotropic glutamate receptor 5-mediated phospholipase D activity. Metabotropic glutamate receptor 3 activation, however, only partially inhibited metabotropic glutamate receptor 5-mediated proliferation. In conclusion, metabotropic glutamate receptor 5 stimulates astrocyte proliferation via a protein kinase C-phospholipase D-phosphatidic acid-dependent pathway, whereas metabotropic glutamate receptor 3-mediated inhibition of astrocyte proliferation does not involve phospholipase D, and is independent of metabotropic glutamate receptor 5-mediated effects.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.