Large-scale Internet applications, such as content distribution networks, are deployed across multiple datacenters and consume massive amounts of electricity. To provide uniformly low access latencies, these datacenters are geographically distributed and the deployment size at each location reflects the regional demand for the application. Consequently, an application's environmental impact can vary significantly depending on the geographical distribution of end-users, as electricity cost and carbon footprint per watt is location specific. In this paper, we describe FORTE: Flow Optimization based framework for request-Routing and Traffic Engineering. FORTE dynamically controls the fraction of user traffic directed to each datacenter in response to changes in both request workload and carbon footprint. It allows an operator to navigate the threeway tradeoff between access latency, carbon footprint, and electricity costs and to determine an optimal datacenter upgrade plan in response to increases in traffic load. We use FORTE to show that carbon taxes or credits are impractical in incentivizing carbon output reduction by providers of large-scale Internet applications. However, they can reduce carbon emissions by 10% without increasing the mean latency nor the electricity bill.
We consider the problem of providing vehicular Internet access using roadside 802.11 access points. We build on previous work in this area [18, 8, 5, 11] with an extensive experimental analysis of protocol operation at a level of detail not previously explored. We report on data gathered with four capture devices from nearly 50 experimental runs conducted with vehicles on a rural highway. Our three primary contributions are: (1) We experimentally demonstrate that, on average, current protocols only achieve 50% of the overall throughput possible in this scenario. In particular, even with a streamlined connection setup procedure that does not use DHCP, high packet losses early in a vehicular connection are responsible for the loss of nearly 25% of overall throughput, 15% of the time. (2) We quantify the effects of ten problems caused by the mechanics of existing protocols that are responsible for this throughput loss; and (3) We recommend best practices for using vehicular opportunistic connections. Moreover, we show that overall throughput could be significantly improved if environmental information was made available to the 802.11 MAC and to TCP. The central message in this paper is that wireless conditions in the vicinity of a roadside access point are predictable, and by exploiting this information, vehicular opportunistic access can be greatly improved.
Rural kiosks in developing countries provide a variety of services such as birth, marriage, and death certificates, electricity bill collection, land records, email services, and consulting on medical and agricultural problems. Fundamental to a kiosk's operation is its connection to the Internet. Network connectivity today is primarily provided by dialup telephone, although Very Small Aperture Terminals (VSAT) or long-distance wireless links are also being deployed. These solutions tend to be both expensive and failure prone. Instead, we propose the use of buses and cars as 'mechanical backhaul' devices to carry data to and from a village and an internet gateway. Building on the pioneering lead of Daknet [15], and extending the Delay Tolerant Networking Research Group architecture [24], we describe a comprehensive solution, encompassing naming, addressing, forwarding, routing, identity management, application support, and security. We believe that this architecture not only meets the top-level goals of low cost and robustness, but also exposes fundamental architectural principles necessary for any such design. We also describe our experiences in implementing a prototype of this architecture.
Endpoints in a delay tolerant network (DTN) [5]
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.