In the present study, the effect of material deposition at the elevated temperature baseplate on the microstructure and mechanical properties was investigated and correlated to the unique thermal history by using numerical simulation. Numerical results agreed well with the experimental results of microstructure and mechanical properties. Numerical results revealed a significant decrease in temperature gradient and a 40% decrease in thermal stress due to material deposition on the elevated temperature baseplate. The reduced thermal stress and temperature gradient resulted in coarser grain features, which in turn led to a decrease in hardness and tensile strength, especially for the bottom region near the baseplate. Meanwhile, no significant effect could be found for ductility. In addition, an elevated temperature baseplate promoted less heterogeneity in hardness and tensile properties along the building direction. The current work demonstrates a collective and direct understanding of the baseplate preheating effect on thermal stress, microstructure and mechanical properties and their correlations, which is believed beneficial for the better utilization of baseplate preheating positive effects.
Purpose This study aims to investigate the effect of the wall thickness, deposition orientation and two different post-processing methods on the local mechanical properties and microstructure of additively manufactured parts made of maraging steel. In order to examine the local properties of the build, miniaturized testing specimens were employed. Before application of small-sized specimens, their performance was verified. Design/methodology/approach The investigation was composed of two stages. As first, the part thickness, specimen size and orientation were studied on a laser-powder bed fusion (L-PBF) platform with deposited walls of various thicknesses made of maraging steel. Subsequently, the influence of different heat-treatment methods was investigated on the final product, i.e. impellers. The miniaturized and standard tensile tests were performed to investigate the local mechanical properties. The porosity, microstructures and fracture surfaces were analysed by X-ray-computed tomography, X-ray diffraction and scanning electron microscopy with electron backscatter diffraction. Findings The results revealed good agreement between the values provided by miniaturized and standard specimens. The thinnest parts produced had the largest pores and the highest scatter of elongation values. In these cases, also the sub-contour porosity was observed. Part thickness affected pores’ size and results repeatability but not total porosity. The two-step heat-treatment (solutionizing and age-hardening) exhibited the highest yield and ultimate tensile strength. Practical implications The microstructure and local mechanical properties were studied on L-PBF platform with deposited walls of various thicknesses. Subsequently, a detailed analysis was conducted on real components (impellers) made of maraging steel, commonly used in tooling, automotive and aerospace industries. Originality/value The broadly understood quality of manufactured parts is crucial for their reliable and long-lasting operation. The findings presented in the manuscript allow the readers better understanding of the connection between deposition parameters, post-processing, microstructure and mechanical performance of additive manufacturing-processed parts.
The creep properties of a laser-directed energy deposition (L-DED) technique manufactured Inconel 718 (IN718) was investigated at 650 °C/700 MPa. Microstructure and creep properties of L-DED IN718 samples were tailored by various post heat treatments involving homogenization heat treatment with temperature ranging from 1080 to 1180 °C + double aging and hot isostatic pressing (HIP). Microstructural changes and their influence on the creep behavior and fracture mechanism were observed and discussed. The results show that L-DED sample heat treated by a simple double aging exhibits a 49% increase in creep lifetime tr and a comparable creep elongation ɛf when compared to the wrought material, due to the reserved coarse dislocation cell substructure from the L-DED process. The loss of dislocation cell structure and the coarsening of grains at higher temperature of heat treatments contributes to a shorter tr, εf, but faster ε̇min (minimum creep rate). The present work demonstrates that a simultaneous improvement of creep strength and creep elongation can be achieved in the case of a coarse-grained L-DED IN718 by a double aging treatment which can preserve both the strengthening precipitates and an appropriate size of dislocation cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.