Thermogravimetric analysis (TGA) was utilised to compare the thermal stability of pure phase change material (D-mannitol) to that of nano-enhanced PCM (NEPCM) (i.e., PCM containing 0.5% and 1% multiwalled carbon nanotubes (MWCNT)). Using model-free kinetics techniques, the kinetics of pure PCM and NEPCM degradation were analysed. Three different kinetic models such as Kissinger-Akahira-Sunose (KAS), the Flynn-Wall-Ozawa (FWO), and the Starink were applied to assess the activation energies of the pure and nano-enhanced PCM samples. Activation energies for pure PCM using the Ozawa, KAS, and Starink methods ranged from 71.10–77.77, 79.36–66.87, and 66.53–72.52 kJ/mol, respectively. NEPCM’s (1% MWCNT) activation energies ranged from 76.59–59.11, 71.52–52.28, and 72.15–53.07 kJ/mol. Models of machine learning were utilised to predict the degradation of NEPCM samples; these included linear regression, support vector regression, random forests, gaussian process regression, and artificial neural network models. The mass loss of the sample functioned as the output parameter, while the addition of nanoparticles weight fraction, the heating rate, and the temperature functioned as the input parameters. Experiment-based TGA data can be accurately predicted using the created machine learning models.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.