The use of phytochemicals in control of human diseases have been considerable public and scientific interest in current days. Syringic acid (SA), a phenolic compound often found in fruits and vegetables and which is synthesized via shikimic acid pathway in plants. It shows a wide range of therapeutic applications in prevention of diabetes, CVDs, cancer, cerebral ischemia; as well as it possess anti-oxidant, antimicrobial, anti-inflammatory, antiendotoxic, neuro and hepatoprotective activities. It has an effective free radical scavenger and alleviates the oxidative stress markers. The therapeutic property of SA is attributed by the presence of methoxy groups onto the aromatic ring at positions 3 and 5. The strong antioxidant activity of SA may confer its beneficial effects for human health. SA has the potential to modulate enzyme activity, protein dynamics and diverse transcription factors involved in diabetes, inflammation, cancer and angiogenesis. In vivo experimental data and histopathological studies on SA activity has delineated its possible therapeutic mechanisms. Besides usage in biomedical field, SA has greater industrial applications in bioremediation, photocatalytic ozonation, and laccase based catalysis. The present review deals about SA natural sources, biosynthesis, bioavailability, biomedical applications (in vivo and in vito. The review addresses basic information about molecular mechanisms, therapeutic and industrial potential of SA.
G-protein coupled receptor (GPR120) is an omega-3 fatty acid receptor that inhibits macrophage-induced tissue inflammation. Recent studies revealed GPR120 promotes colorectal carcinoma through modulation of VEGF, IL-8, PGE2, and NF-kB expression. However, three-dimensional structure of GPR120 is not yet available in Protein Data Bank (PDB). In the present study, we focused on a 3-D structural model of GPR120 has been constructed using homology modeling techniques. The structural quality of the predicted GPR120 model was verified using Procheck, Whatif, ProSA, and Verify 3D. After this chemical database of natural compounds have been constructed and screened for its druggability using molinspiration server. Molecular docking studies of natural compounds on GPR120 model revealed that silibinin (− 6.87 kcal/mol), withanolide (− 6.19 kcal/mol), limonene (− 6.17 kcal/mol), and cervical (− 6.15 kcal/mol) have shown good docking interactions with active site residues of the target. Active site residues of Arg280, Asp275, and Gly122 showed hydrogen-bonding interactions with predicted compounds. Based on these in silico findings, we proposed that virtual screening of natural compounds against of GPR120 is a novel approach to find potential anti-colorectal cancer therapeutics.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.