Experimental cerebral malaria (ECM) resulting from Plasmodium berghei ANKA (PbA) infection in mice results in neuronal cell death. However, the precise mechanisms leading to neuronal cell death in ECM have not been fully elucidated. In the present study, we report the presence of endoplasmic reticulum (ER) stress markers and activation of the unfolded protein response (UPR) in the brain during the pathogenesis of ECM. Specific findings included activation of PKR-like ERkinase, inositol-requiring enzyme 1 and cleavage of activating transcription factor (ATF) 6 indicating the activation of all three major arms of the UPR. Further, we found changes in the protein levels of phosphorylated eukaryotic initiation factor α (p-eIF2α), ATF4, growth arrest and DNA damage-inducible protein 34, B cell lymphoma protein 2 (BCL-2), BCL-2-associated X protein, caspase-7, cleavage of caspase-3, and caspase-12. Our results demonstrate that ER stress-induced neuronal cell death in PbA-infected mice is associated with the expression of the pro-apoptotic molecule CHOP and downregulation of anti-apoptotic ER quality control molecules binding immunoglobulin protein, calreticulin and calnexin. Further CHOP was found to be localized in neurons and plays an essential role in neuronal cell death as revealed by our Fluoro-Jade B double staining. These results implicate an imbalance between ER stress-mediated pro-apoptotic and anti-apoptotic/survival signalling as a critical determinant of neuronal cell death in ECM.
Cerebral malaria (CM) is the most severe complication of Plasmodium falciparum in humans and major cause of death. SP600125 is a specific, small molecule inhibitor of JNK that prevents the phosphorylation of c-Jun and blocks the expression of proinflammatory cytokines and attenuates neuronal apoptosis in several neurodegenerative disorders. We evaluated the effect of SP600125 treatment on the survival of Plasmodium berghei ANKA (PbA)-infected C57BL/6J mice. Administration of SP600125 improved survival in PbA-infected C57BL6J mice but has no effect on parasitemia. Further, SP600125 administration resulted in attenuation of neuronal cell death along with inhibition of proinflammatory mediators TNF-α and COX-2 and proapoptotic mediators p-c-Jun and active caspase 3 in PbA-infected mice. The promising findings of this study make SP600125 a potential agent for supportive therapy to alleviate inflammation and neuronal cell death associated with CM.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.