The formation of frost and ice can have negative impacts on travel and a variety of industrial processes and is typically addressed by dispensing antifreeze substances such as salts and glycols. Despite the popularity of this anti-icing approach, some of the intricate underlying physical mechanisms are just being unraveled. For example, recent studies have shown that in addition to suppressing ice formation within its own volume, an individual salt saturated water microdroplet forms a region of inhibited condensation and condensation frosting (RIC) in its surrounding area. This occurs because salt saturated water, like most antifreeze substances, is hygroscopic and has water vapor pressure at its surface lower than water saturation pressure at the substrate. Here, we demonstrate that for macroscopic drops of propylene glycol and salt saturated water, the absolute RIC size can remain essentially unchanged for several hours. Utilizing this observation, we demonstrate that frost formation can be completely inhibited in-between microscopic and macroscopic arrays of propylene glycol and salt saturated water drops with spacing (S) smaller than twice the radius of the RIC (δ). Furthermore, by characterizing condensation frosting dynamics around various hygroscopic drop arrays, we demonstrate that they can delay complete frosting over of the samples 1.6 to 10 times longer than films of the liquids with equivalent volume. The significant delay in onset of ice nucleation achieved by dispensing propylene glycol in drops rather than in films is likely due to uniform dilution of the drops driven by thermocapillary flow. This transport mode is absent in the films, leading to faster dilution, and with that facilitated homogeneous nucleation, near the liquid-air interface.
The use of personal protective gear made from omniphobic materials that easily shed drops of all sizes could provide enhanced protection from direct exposure to most liquid-phase biological and chemical hazards and facilitate the postexposure decontamination of the gear. In recent literature, lubricated nanostructured fabrics are seen as attractive candidates for personal protective gear due to their omniphobic and self-healing characteristics. However, the ability of these lubricated fabrics to shed low surface tension liquids after physical contact with other objects in the surrounding, which is critical in demanding healthcare and military field operations, has not been investigated. In this work, we investigate the depletion of oil from lubricated fabrics in contact with highly absorbing porous media and the resulting changes in the wetting characteristics of the fabrics by representative low and high surface tension liquids. In particular, we quantify the loss of the lubricant and the dynamic contact angles of water and ethanol on lubricated fabrics upon repeated pressurized contact with highly absorbent cellulose-fiber wipes at different time intervals. We demonstrate that, in contrast to hydrophobic nanoparticle coated microfibers, fabrics encapsulated within a polymer that swells with the lubricant retain the majority of the oil and are capable of repelling high as well as low surface tension liquids even upon multiple contacts with the highly absorbing wipes. The fabric supported lubricant-swollen polymeric films introduced here, therefore, could provide durable and easy to decontaminate protection against hazardous biological and chemical liquids.
Analytical solution of the pressure field for water uptake through a composite root, coupled with fully saturated soil is derived by using the slender body approximation. It is shown that in general, the resistance of the root and soil are not additive. This result can play a very important role in modelling water uptake through plant roots and determination of hydraulic resistances of plant roots. Optimum plant root structure that minimizes a single root's hydraulic resistance is also studied in this work with the constraint of prescribed root volume. Hydraulic resistances under the slender body approximation and without such a limitation are considered. It is found that for large stele-to-cortex permeability ratio, there exists an optimum root length-to-base-radius ratio that minimizes the hydraulic resistance.A remarkable feature of the optimum root structure is that the optimum dimensionless stele conductivity depends only on a single geometrical parameter, the stele-to-root base-radius ratio. Once the stele-to-root base-radius ratio and the stele-to-cortex permeability ratio are given, the optimum root length-to-radius ratio can be found. While these findings remain to be verified by experiments for real plant roots, they offer theoretical guidance for the design of bio-inspired structures that minimizes hydraulic resistance for fluid production from porous media.ii ACKNOWLEDGMENTS I would like to sincerely thank Dr. Chen, my thesis advisor, for the encouragement and support that he has provided at every step and for being a great teacher.
This paper discusses the physical mechanisms of enhanced fluid production from thin and slender porous structures such as hydraulic fractures and plant roots. The work shows how the end effect induces a large local pressure gradient in the medium which creates a converging flow pattern that focuses the fluid to the end region. As a result, a nearly singular flux density around the end develops which can promote the flux density distribution along the structure-medium surface, thus enhancing the production rate. For a given porous structure volume, a competition exists between the structure conductivity and the structure penetration length. This leads to an optimal length-to-width ratio for the structure that maximizes the fluid production rate. Optimized fracture and plant root are discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.