Effective data analysis ideally requires the analyst to have high expertise as well as high knowledge of the data. Even with such familiarity, manually pursuing all potential hypotheses and exploring all possible views is impractical. We present DataSite, a proactive visual analytics system where the burden of selecting and executing appropriate computations is shared by an automatic server-side computation engine. Salient features identified by these automatic background processes are surfaced as notifications in a feed timeline. DataSite effectively turns data analysis into a conversation between analyst and computer, thereby reducing the cognitive load and domain knowledge requirements. We validate the system with a user study comparing it to a recent visualization recommendation system, yielding significant improvement, particularly for complex analyses that existing analytics systems do not support well.
Visualization is coming of age. With visual depictions being seamlessly integrated into documents, and data visualization techniques being used to understand increasingly large and complex datasets, the term "visualization"' is becoming used in everyday conversations. But we are on a cusp; visualization researchers need to develop and adapt to today's new devices and tomorrow's technology. Today, people interact with visual depictions through a mouse. Tomorrow, they'll be touching, swiping, grasping, feeling, hearing, smelling, and even tasting data. The next big thing is multisensory visualization that goes beyond the desktop.
Progressive visual analytics (PVA) has emerged in recent years to manage the latency of data analysis systems. When analysis is performed progressively, rough estimates of the results are generated quickly and are then improved over time. Analysts can therefore monitor the progression of the results, steer the analysis algorithms, and make early decisions if the estimates provide a convincing picture. In this article, we describe interface design guidelines for helping users understand progressively updating results and make early decisions based on progressive estimates. To illustrate our ideas, we present a prototype PVA tool called InsightsFeed for exploring Twitter data at scale. As validation, we investigate the tradeoffs of our tool when exploring a Twitter dataset in a user study. We report the usage patterns in making early decisions using the user interface, guiding computational methods, and exploring different subsets of the dataset, compared to sequential analysis without progression.
Visualization tools are often specialized for specific tasks, which turns the user's analytical workflow into a fragmented process performed across many tools. In this paper, we present a component model design for data visualization to promote modular designs of visualization tools that enhance their analytical scope. Rather than fragmenting tasks across tools, the component model supports unification, where components-the building blocks of this model-can be assembled to support a wide range of tasks. Furthermore, the model also provides additional key properties, such as support for collaboration, sharing across multiple devices, and adaptive usage depending on expertise, from creating visualizations using dropdown menus, through instantiating components, to actually modifying components or creating entirely new ones from scratch using JavaScript or Python source code. To realize our model, we introduce VISTRATES, a literate computing platform for developing, assembling, and sharing visualization components. From a visualization perspective, Vistrates features cross-cutting components for visual representations, interaction, collaboration, and device responsiveness maintained in a component repository. From a development perspective, Vistrates offers a collaborative programming environment where novices and experts alike can compose component pipelines for specific analytical activities. Finally, we present several Vistrates use cases that span the full range of the classic "anytime" and "anywhere" motto for ubiquitous analysis: from mobile and on-the-go usage, through office settings, to collaborative smart environments covering a variety of tasks and devices.
No abstract
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.