A key motivator for the usage of cryptocurrency such as bitcoin in illicit activity is the degree of anonymity provided by the alphanumeric addresses used in transactions. This however does not mean that anonymity is built into the system as the transactions being made are still subject to the human element. Additionally, there is around 400 Gigabytes of raw data available in the bitcoin blockchain, making it a big data problem. HPCC Systems is used in this research, which is a data intensive, open source, big data platform. This paper attempts to use timing data produced by taking the time intervals between consecutive transactions performed by an address and make an --von Mises criterion, two addresses are compared to find if they are from the same source. The BABD-13 dataset was used as a source of illegal addresses, which provided both references and test data points. The research shows that time-series data can be used to represent transactional behaviour of a user and the algorithm proposed is able to identify different addresses originating from the same user or users engaging in similar activity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.