We determined that two mouse cryptochrome genes, mCry1 and mCry2, act in the negative limb of the clock feedback loop. In cell lines, mPER proteins (alone or in combination) have modest effects on their cellular location and ability to inhibit CLOCK:BMAL1 -mediated transcription. This suggested cryptochrome involvement in the negative limb of the feedback loop. Indeed, mCry1 and mCry2 RNA levels are reduced in the central and peripheral clocks of Clock/Clock mutant mice. mCRY1 and mCRY2 are nuclear proteins that interact with each of the mPER proteins, translocate each mPER protein from cytoplasm to nucleus, and are rhythmically expressed in the suprachiasmatic circadian clock. Luciferase reporter gene assays show that mCRY1 or mCRY2 alone abrogates CLOCK:BMAL1-E box-mediated transcription. The mPER and mCRY proteins appear to inhibit the transcriptional complex differentially.
We show that, in the mouse, the core mechanism for the master circadian clock consists of interacting positive and negative transcription and translation feedback loops. Analysis of Clock/Clock mutant mice, homozygous Period2(Brdm1) mutants, and Cryptochrome-deficient mice reveals substantially altered Bmal1 rhythms, consistent with a dominant role of PERIOD2 in the positive regulation of the Bmal1 loop. In vitro analysis of CRYPTOCHROME inhibition of CLOCK: BMAL1-mediated transcription shows that the inhibition is through direct protein:protein interactions, independent of the PERIOD and TIMELESS proteins. PERIOD2 is a positive regulator of the Bmal1 loop, and CRYPTOCHROMES are the negative regulators of the Period and Cryptochrome cycles.
The posttranscriptional mechanisms that control the cycling of circadian clock protein levels are not known. Here we demonstrate a role for protein phosphatase 2A (PP2A) in the cyclic expression of the PER protein. PP2A regulatory subunits TWS and WDB target PER and stabilize it in S2 cells. In adult fly heads, expression of tws cycles robustly under control of the circadian clock. Hypomorphic tws mutants show delayed accumulation of PER, while overexpression of tws in clock neurons produces shorter, weaker rhythms. Reduction of PP2A activity reduces PER expression in central clock neurons and results in long periods and arrhythmia. In addition, overexpression of the PP2A catalytic subunit results in loss of behavioral rhythms and constitutive nuclear expression of PER. PP2A also affects PER phosphorylation in vitro and in vivo. We propose that the posttranslational mechanisms that drive cycling of PER require the rhythmic expression of PP2A.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.